Patents by Inventor Yijun Liu

Yijun Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11815308
    Abstract: A method and apparatus for producing liquefied natural gas. A portion of a natural gas stream is cooled in a first heat exchanger and re-combined with the natural gas stream, and heavy hydrocarbons are removed therefrom to generate a separated natural gas stream and a separator bottom stream. Liquids are separated from the separator bottom stream to form an overhead stream, which is cooled and separated to form a recycle gas stream. The recycle gas stream is compressed. A first portion of the compressed recycle gas stream is directed through the first heat exchanger and directed to the separator as a column reflux stream. The separated to natural gas stream is used as a coolant in the first heat exchanger to thereby generate a pretreated natural gas stream, which is compressed and liquefied.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: November 14, 2023
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Yijun Liu, Fritz Pierre, Jr.
  • Patent number: 11806639
    Abstract: A method and apparatus for producing liquefied natural gas. A portion of a natural gas stream is cooled in a heat exchanger and combined with the natural gas stream. Heavy hydrocarbons are removed from the combined natural gas stream, and the resulting separated natural gas stream is partially condensed in the first heat exchanger, with a liquid stream separated therefrom. The natural gas stream is warmed in the first heat exchanger and then is compressed and cooled. The resultant cooled compressed natural gas stream is expanded, thereby forming a chilled natural gas stream that is separated into a refrigerant stream and a non-refrigerant stream. The refrigerant stream recycled to the heat exchanger to be warmed through heat exchange with one or more process streams associated with pretreating the natural gas stream, thereby generating a warmed refrigerant stream. The warmed refrigerant stream and the non-refrigerant stream are liquefied.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: November 7, 2023
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Yijun Liu, Fritz Pierre, Jr.
  • Publication number: 20230258401
    Abstract: A method of producing LNG. According to the method, a natural gas stream is compressed using first and second compressors. A cooler cools the natural gas stream so that the second compressor produces a cooled, compressed natural gas stream, which is liquefied in a liquefaction process. The liquefaction process uses a refrigerant compressor configured to compress a stream of refrigerant used to chill, condense, or liquefy the cooled, compressed natural gas stream. Using a heat recovery steam generation (HRSG) system, heat is recovered from a power source of the refrigerant compressor. A stream of pressurized steam is generated from the recovered heat. At least one of the first and second compressors is powered using at least part of the stream of pressurized steam.
    Type: Application
    Filed: May 20, 2021
    Publication date: August 17, 2023
    Inventors: Jorge Vincentelli, Yijun Liu, Ananda K. Nagavarapu, Xiaoli Y. Wright
  • Patent number: 11710631
    Abstract: Exemplary semiconductor processing methods may include flowing deposition gases that may include a nitrogen-containing precursor, a silicon-containing precursor, and a carrier gas, into a substrate processing region of a substrate processing chamber. The flow rate ratio of the nitrogen-containing precursor to the silicon-containing precursor may be greater than or about 1:1. The methods may further include generating a deposition plasma from the deposition gases to form a silicon-and-nitrogen containing layer on a substrate in the substrate processing chamber. The silicon-and-nitrogen-containing layer may be treated with a treatment plasma, where the treatment plasma is formed from the carrier gas without the silicon-containing precursor. The flow rate of the carrier gas in the treatment plasma may be greater than a flow rate of the carrier gas in the deposition plasma.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: July 25, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Michael Wenyoung Tsiang, Yichuen Lin, Kevin Hsiao, Hang Yu, Deenesh Padhi, Yijun Liu, Li-Qun Xia
  • Publication number: 20230227374
    Abstract: A preparation method includes the following steps: Step (1): pressing and then drying body powder to form a green brick; Step (2): applying a ground coat on the surface of the green brick; Step (3): inkjet-printing a pattern on the surface of the green brick having the ground coat, and applying an isolation glaze; Step (4): applying a fully polished glaze on the surface of the green brick having the isolation glaze; and Step (5): drying, firing, and polishing the green brick having the fully polished glaze to obtain a hard wear-resistant polished glazed ceramic tile. The phase composition of the fired fully polished glaze is as follows: 10 to 20 percent by weight of corundum, 20 to 30 percent by weight of hyalophane, 0.5 to 1.0 percent by weight of hematite, and 50 to 68 percent by weight of amorphous phase.
    Type: Application
    Filed: December 24, 2020
    Publication date: July 20, 2023
    Inventors: Yijun LIU, Laifu DENG, Yuandong YANG, Xianchao WANG, Kelin ZHANG
  • Publication number: 20230192569
    Abstract: The present application provides a high-wear-resistance far-infrared ceramic polished glazed tile and preparation method therefor. The preparation method includes application of far-infrared overglaze, ink-jet printing, application of transparent far-infrared polished glaze and application of abrasion-resistant far-infrared polished glaze in sequence on a body, firing, and polishing. By adopting the far-infrared overglaze, the transparent far-infrared polished glaze and the abrasion-resistant far-infrared polished glaze in combination, the polished glaze tile can have a far-infrared function, high transparency, and high abrasion resistance.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 22, 2023
    Inventors: Yijun LIU, Yuandong YANG, Kelin ZHANG, Xianchao WANG, Lingyan HUANG
  • Publication number: 20230142684
    Abstract: Method of forming low-k films with reduced dielectric constant, reduced CHx content, and increased hardness are described. A siloxane film is on a substrate surface using a siloxane precursor comprising O—Si—O bonds and cured using ultraviolet light.
    Type: Application
    Filed: December 21, 2021
    Publication date: May 11, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Bo Xie, Ruitong Xiong, Sure K. Ngo, Kang Sub Yim, Yijun Liu, Li-Qun Xia
  • Publication number: 20230136307
    Abstract: A method for liquefying a feed gas stream. A refrigerant stream is cooled and expanded to produce an expanded, cooled refrigerant stream. Part or all of the expanded, cooled refrigerant stream is mixed with a make-up refrigerant stream in a separator, thereby condensing heavy hydrocarbon components from the make-up refrigerant stream and forming a gaseous expanded, cooled refrigerant stream. The gaseous expanded, cooled refrigerant stream passes through a heat exchanger zone to form a warm refrigerant stream. The feed gas stream is passed through the heat exchanger zone to cool at least part of the feed gas stream by indirect heat exchange with the expanded, cooled refrigerant stream, thereby forming a liquefied gas stream. The warm refrigerant stream is compressed to produce the compressed refrigerant stream.
    Type: Application
    Filed: December 15, 2022
    Publication date: May 4, 2023
    Inventors: Yijun LIU, Fritz PIERRE, Jr.
  • Patent number: 11635252
    Abstract: A method is disclosed for start-up of a system for liquefying a feed gas stream comprising natural gas. The system has a feed gas compression and expansion loop, and a refrigerant system comprising a primary cooling loop and a sub-cooling loop. The feed gas compression and expansion loop is started up. The refrigerant system is pressurized. Circulation in the primary cooling loop is started and established. Circulation in the sub-cooling loop is started and established. A flow rate of the feed gas stream and circulation rates of the primary cooling loop and the sub-cooling loop are ramped up.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: April 25, 2023
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Yijun Liu, Fritz Pierre, Jr., Ananda K. Nagavarapu, Xiaoli Y. Wright
  • Publication number: 20230113965
    Abstract: A method for dielectric filling of a feature on a substrate yields a seamless dielectric fill with high-k for narrow features. In some embodiments, the method may include depositing a metal material into the feature to fill the feature from a bottom of the feature wherein the feature has an opening ranging from less than 20 nm to approximately 150 nm at an upper surface of the substrate and wherein depositing the metal material is performed using a high ionization physical vapor deposition (PVD) process to form a seamless metal gap fill and treating the seamless metal gap fill by oxidizing/nitridizing the metal material of the seamless metal gap fill with an oxidation/nitridation process to form dielectric material wherein the seamless metal gap fill is converted into a seamless dielectric gap fill with high-k dielectric material.
    Type: Application
    Filed: October 13, 2021
    Publication date: April 13, 2023
    Inventors: Chengyu LIU, Ruitong XIONG, Bo XIE, Xianmin TANG, Yijun LIU, Li-Qun XIA
  • Patent number: 11621162
    Abstract: Semiconductor processing methods are described for forming UV-treated, low-? dielectric films. The methods may include flowing deposition precursors into a substrate processing region of a semiconductor processing chamber. The deposition precursors may include a silicon-and-carbon-containing precursor. The methods may further include generating a deposition plasma from the deposition precursors within the substrate processing region, and depositing a silicon-and-carbon-containing material on the substrate from plasma effluents of the deposition plasma. The as-deposited silicon-and-carbon-containing material may be characterized by greater than or about 5% hydrocarbon groups. The methods may still further include exposing the deposited silicon-and-carbon-containing material to ultraviolet light. The exposed silicon-and-carbon-containing material may be characterized by less than or about 2% hydrocarbon groups.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: April 4, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Bo Xie, Ruitong Xiong, Sure Ngo, Kang Sub Yim, Yijun Liu, Li-Qun Xia
  • Publication number: 20230094012
    Abstract: Exemplary semiconductor processing methods may include providing a silicon-containing precursor to a processing region of a semiconductor processing chamber. A substrate may be disposed within the processing region of the semiconductor processing chamber. The methods may include forming a plasma of the silicon-containing precursor in the processing region. The plasma may be at least partially formed by an RF power operating at between about 50 W and 1,000 W, at a pulsing frequency below about 100,000 Hz, and at a duty cycle between about 5% and 95%. The methods may include forming a layer of material on the substrate. The layer of material may include a silicon-containing material.
    Type: Application
    Filed: September 15, 2021
    Publication date: March 30, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Ruitong Xiong, Bo Xie, Xiaobo Li, Yijun Liu, Li-Qun Xia
  • Patent number: 11600486
    Abstract: Embodiments of the semiconductor processing methods to form low-? films on semiconductor substrates are described. The processing methods may include flowing deposition precursors into a substrate processing region of a semiconductor processing chamber. The deposition precursors may include a silicon-containing precursor that has at least one vinyl group. The methods may further include generating a deposition plasma in the substrate processing region from the deposition precursors. A silicon-and-carbon-containing material, characterized by a dielectric constant (? value) less than or about 3.0, may be deposited on the substrate from plasma effluents of the deposition plasma.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: March 7, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Bo Xie, Ruitong Xiong, Sure K. Ngo, Kang Sub Yim, Yijun Liu, Li-Qun Xia
  • Patent number: 11572622
    Abstract: Exemplary semiconductor processing methods to clean a substrate processing chamber are described. The methods may include depositing a dielectric film on a first substrate in a substrate processing chamber, where the dielectric film may include a silicon-carbon-oxide. The first substrate having the dielectric film may be removed from the substrate processing chamber, and the dielectric film may be deposited on at least one more substrate in the substrate processing chamber. The at least one more substrate may be removed from the substrate processing chamber after the dielectric film is deposited on the substrate. Etch plasma effluents may flow into the substrate processing chamber after the removal of a last substrate having the dielectric film. The etch plasma effluents may include greater than or about 500 sccm of NF3 plasma effluents, and greater than or about 1000 sccm of O2 plasma effluents.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: February 7, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Bo Xie, Ruitong Xiong, Kang Sub Yim, Yijun Liu, Li-Qun Xia, Sure K. Ngo
  • Patent number: 11555651
    Abstract: A method for liquefying a feed gas stream. A refrigerant stream is cooled and expanded to produce an expanded, cooled refrigerant stream. Part or all of the expanded, cooled refrigerant stream is mixed with a make-up refrigerant stream in a separator, thereby condensing heavy hydrocarbon components from the make-up refrigerant stream and forming a gaseous expanded, cooled refrigerant stream. The gaseous expanded, cooled refrigerant stream passes through a heat exchanger zone to form a warm refrigerant stream. The feed gas stream is passed through the heat exchanger zone to cool at least part of the feed gas stream by indirect heat exchange with the expanded, cooled refrigerant stream, thereby forming a liquefied gas stream. The warm refrigerant stream is compressed to produce the compressed refrigerant stream.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: January 17, 2023
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Yijun Liu, Fritz Pierre, Jr.
  • Patent number: 11536510
    Abstract: A method and apparatus for producing liquefied natural gas. A pretreated natural gas stream is compressed in at least two serially arranged compressors to a pressure of at least 1,500 psia and cooled. The resultant cooled compressed natural gas stream is expanded in at least one work producing natural gas expander to a pressure less than 2,000 psia and no greater than the pressure to which natural gas stream has been compressed, thereby forming a chilled natural gas stream that is separated into a refrigerant stream and a non-refrigerant stream. The refrigerant stream is warmed in a heat exchanger through heat exchange with one or more process streams associated with pretreating the natural gas stream, thereby generating a warmed refrigerant stream. The warmed refrigerant stream and the non-refrigerant stream are then liquefied.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: December 27, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Yijun Liu, Fritz Pierre, Jr.
  • Publication number: 20220130661
    Abstract: Exemplary semiconductor processing methods may include flowing deposition gases that may include a nitrogen-containing precursor, a silicon-containing precursor, and a carrier gas, into a substrate processing region of a substrate processing chamber. The flow rate ratio of the nitrogen-containing precursor to the silicon-containing precursor may be greater than or about 1:1. The methods may further include generating a deposition plasma from the deposition gases to form a silicon-and-nitrogen containing layer on a substrate in the substrate processing chamber. The silicon-and-nitrogen-containing layer may be treated with a treatment plasma, where the treatment plasma is formed from the carrier gas without the silicon-containing precursor. The flow rate of the carrier gas in the treatment plasma may be greater than a flow rate of the carrier gas in the deposition plasma.
    Type: Application
    Filed: October 23, 2020
    Publication date: April 28, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Michael Wenyoung Tsiang, Yichuen Lin, Kevin Hsiao, Hang Yu, Deenesh Padhi, Yijun Liu, Li-Qun Xia
  • Publication number: 20220108884
    Abstract: Semiconductor processing methods are described for forming UV-treated, low-? dielectric films. The methods may include flowing deposition precursors into a substrate processing region of a semiconductor processing chamber. The deposition precursors may include a silicon-and-carbon-containing precursor. The methods may further include generating a deposition plasma from the deposition precursors within the substrate processing region, and depositing a silicon-and-carbon-containing material on the substrate from plasma effluents of the deposition plasma. The as-deposited silicon-and-carbon-containing material may be characterized by greater than or about 5% hydrocarbon groups. The methods may still further include exposing the deposited silicon-and-carbon-containing material to ultraviolet light. The exposed silicon-and-carbon-containing material may be characterized by less than or about 2% hydrocarbon groups.
    Type: Application
    Filed: October 5, 2020
    Publication date: April 7, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Bo Xie, Ruitong Xiong, Sure Ngo, Kang Sub Yim, Yijun Liu, Li-Qun Xia
  • Publication number: 20220084815
    Abstract: Embodiments of the semiconductor processing methods to form low-? films on semiconductor substrates are described. The processing methods may include flowing deposition precursors into a substrate processing region of a semiconductor processing chamber. The deposition precursors may include a silicon-containing precursor that has at least one vinyl group. The methods may further include generating a deposition plasma in the substrate processing region from the deposition precursors. A silicon-and-carbon-containing material, characterized by a dielectric constant (? value) less than or about 3.0, may be deposited on the substrate from plasma effluents of the deposition plasma.
    Type: Application
    Filed: September 15, 2020
    Publication date: March 17, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Bo Xie, Ruitong Xiong, Sure Ngo, Kang Sub Yim, Yijun Liu, Li-Qun Xia
  • Publication number: 20220081765
    Abstract: Exemplary semiconductor processing methods to clean a substrate processing chamber are described. The methods may include depositing a dielectric film on a first substrate in a substrate processing chamber, where the dielectric film may include a silicon-carbon-oxide. The first substrate having the dielectric film may be removed from the substrate processing chamber, and the dielectric film may be deposited on at least one more substrate in the substrate processing chamber. The at least one more substrate may be removed from the substrate processing chamber after the dielectric film is deposited on the substrate. Etch plasma effluents may flow into the substrate processing chamber after the removal of a last substrate having the dielectric film. The etch plasma effluents may include greater than or about 500 sccm of NF3 plasma effluents, and greater than or about 1000 sccm of O2 plasma effluents.
    Type: Application
    Filed: September 14, 2020
    Publication date: March 17, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Bo Xie, Ruitong Xiong, Kang Sub Yim, Yijun Liu, Li-Qun Xia, Sure Ngo