Patents by Inventor Yin-Chieh Chen

Yin-Chieh Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145520
    Abstract: The present disclosure provides a method for fabricating an image sensor. The method includes the following operations. A cavity is formed at a first surface of a substrate. A germanium layer is formed in the cavity. A first heavily doped region is formed in the germanium layer by an implantation operation. A second heavily doped region is formed at a position proximal to a top surface of the germanium layer, wherein the second heavily doped region is laterally surrounded by the first heavily doped region from a top view perspective. An interconnect structure is formed over the germanium layer.
    Type: Application
    Filed: January 4, 2024
    Publication date: May 2, 2024
    Inventors: JHY-JYI SZE, SIN-YI JIANG, YI-SHIN CHU, YIN-KAI LIAO, HSIANG-LIN CHEN, KUAN-CHIEH HUANG, JUNG-I LIN
  • Publication number: 20240136401
    Abstract: The present disclosure relates to an integrated chip. The integrated chip includes a substrate having a first semiconductor material. A second semiconductor material is disposed on the first semiconductor material and a passivation layer is disposed on the second semiconductor material. A first doped region and a second doped region extend through the passivation layer and into the second semiconductor material. A silicide is arranged within the passivation layer and along tops of the first doped region and the second doped region.
    Type: Application
    Filed: January 5, 2024
    Publication date: April 25, 2024
    Inventors: Yin-Kai Liao, Sin-Yi Jiang, Hsiang-Lin Chen, Yi-Shin Chu, Po-Chun Liu, Kuan-Chieh Huang, Jyh-Ming Hung, Jen-Cheng Liu
  • Publication number: 20240105877
    Abstract: Germanium-based sensors are disclosed herein. An exemplary germanium-based sensor includes a germanium photodiode and a junction field effect transistor (JFET) formed from a germanium layer disposed on and/or in a silicon substrate. A doped silicon layer, which can be formed by in-situ doping epitaxially grown silicon, is disposed between the germanium layer and the silicon substrate. In embodiments where the germanium layer is on the silicon substrate, the doped silicon layer is disposed between the germanium layer and an oxide layer. The JFET has a doped polysilicon gate, and in some embodiments, a gate diffusion region is disposed in the germanium layer under the doped polysilicon gate. In some embodiments, a pinned photodiode passivation layer is disposed in the germanium layer. In some embodiments, a pair of doped regions in the germanium layer is configured as an e-lens of the germanium-based sensor.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 28, 2024
    Inventors: Jhy-Jyi Sze, Sin-Yi Jiang, Yi-Shin Chu, Yin-Kai Liao, Hsiang-Lin Chen, Kuan-Chieh Huang
  • Patent number: 10450455
    Abstract: The present invention relates to hydrogenated block copolymers of vinyl aromatic polymer blocks and conjugated diene polymer blocks having specific molecular weights, compositions, molecular structures and architectures, such that improved processability, mechanical and optical properties are attained. The hydrogenated block copolymer can be further added with different hydrogenated block copolymers to enhance the desired properties.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: October 22, 2019
    Assignee: USI CORPORATION
    Inventors: Yung-Shen Chang, Cheng-Hao Liu, Zong-Fu Shih, You-Ming Wang, Yi-Hsing Chiang, Yin-Chieh Chen, Moh-Ching Oliver Chang, Che-I Kao, Han-Tai Liu
  • Patent number: 10407532
    Abstract: A catalyst composition, a method for hydrogenating styrenic block copolymer employing the same, and a hydrogenated polymer from the method are provided. The method for hydrogenating styrenic block copolymer includes subjecting a hydrogenation process to a styrenic block copolymer in the presence of a catalyst composition. In particular, the catalyst composition includes an oxide carrier, and a catalyst disposed on the oxide carrier, wherein the catalyst includes a platinum-and-rhenium containing phosphorus compound.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: September 10, 2019
    Assignee: TSRC CORPORATION
    Inventors: Chih-Wei Hsu, Man-Yin Lo, Yin-Chieh Chen
  • Patent number: 10131733
    Abstract: A catalyst composition, a method for hydrogenating styrenic block copolymer employing the same, and a hydrogenated polymer from the method are provided. The method for hydrogenating styrenic block copolymer includes subjecting a hydrogenation process to a styrenic block copolymer in the presence of a catalyst composition. In particular, the catalyst composition includes an oxide carrier, and a catalyst disposed on the oxide carrier, wherein the catalyst includes a platinum-and-rhenium containing phosphorus compound.
    Type: Grant
    Filed: November 28, 2013
    Date of Patent: November 20, 2018
    Assignee: TSRC CORPORATION
    Inventors: Chih-Wei Hsu, Man-Yin Lo, Yin-Chieh Chen
  • Publication number: 20180258276
    Abstract: The present invention relates to hydrogenated block copolymers of vinyl aromatic polymer blocks and conjugated diene polymer blocks having specific molecular weights, compositions, molecular structures and architectures, such that improved processability, mechanical and optical properties are attained. The hydrogenated block copolymer can be further added with different hydrogenated block copolymers to enhance the desired properties.
    Type: Application
    Filed: March 7, 2018
    Publication date: September 13, 2018
    Inventors: Yung-Shen Chang, Cheng-Hao Liu, Zong-Fu Shih, You-Ming Wang, Yi-Hsing Chiang, Yin-Chieh Chen, Moh-Ching Oliver Chang, Che-I Kao, Han-Tai Liu
  • Publication number: 20180009925
    Abstract: A catalyst composition, a method for hydrogenating styrenic block copolymer employing the same, and a hydrogenated polymer from the method are provided. The method for hydrogenating styrenic block copolymer includes subjecting a hydrogenation process to a styrenic block copolymer in the presence of a catalyst composition. In particular, the catalyst composition includes an oxide carrier, and a catalyst disposed on the oxide carrier, wherein the catalyst includes a platinum-and-rhenium containing phosphorus compound.
    Type: Application
    Filed: August 14, 2017
    Publication date: January 11, 2018
    Inventors: Chih-Wei Hsu, Man-Yin Lo, Yin-Chieh Chen
  • Publication number: 20150094423
    Abstract: A catalyst composition, a method for hydrogenating styrenic block copolymer employing the same, and a hydrogenated polymer from the method are provided. The method for hydrogenating styrenic block copolymer includes subjecting a hydrogenation process to a styrenic block copolymer in the presence of a catalyst composition. In particular, the catalyst composition includes an oxide carrier, and a catalyst disposed on the oxide carrier, wherein the catalyst includes a platinum-and-rhenium containing phosphorus compound.
    Type: Application
    Filed: November 28, 2013
    Publication date: April 2, 2015
    Applicant: TSRC CORPORATION
    Inventors: Chih-Wei Hsu, Man-Yin Lo, Yin-Chieh Chen