Patents by Inventor Yin-Chuan Chuang

Yin-Chuan Chuang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230395598
    Abstract: A sacrificial layer is formed over a first channel structure of an N-type transistor (NFET) and over a second channel structure of a P-type transistor (PFET). A PFET patterning process is performed at least in part by etching away the sacrificial layer in the PFET while protecting the NFET from being etched. After the PFET patterning process has been performed, a P-type work function (WF) metal layer is deposited in both the NFET and the PFET. An NFET patterning process is performed at least in part by etching away the P-type WF metal layer and the sacrificial layer in the NFET while protecting the PFET from being etched. After the NFET patterning process has been performed, an N-type WF metal layer is deposited in both the NFET and the PFET.
    Type: Application
    Filed: June 4, 2022
    Publication date: December 7, 2023
    Inventors: Jo-Chun Hung, Chih-Wei Lee, Wen-Hung Huang, Hui-Chi Chen, Jian-Hao Chen, Kuo-Feng Yu, Hsin-Han Tsai, Yin-Chuan Chuang, Yu-Ling Cheng, Yu-Xuan Wang, Tefu Yeh
  • Publication number: 20230104442
    Abstract: A semiconductor structure includes a substrate and a semiconductor channel layer over the substrate. The semiconductor structure includes a high-k gate dielectric layer over the semiconductor channel layer, a work function metal layer over the high-k gate dielectric layer, and a bulk metal layer over the work function metal layer. The work function metal layer includes a first portion and a second portion over the first portion. Both the first portion and the second portion are conductive. Materials included in the second portion are also included in the first portion. The first portion is doped with silicon at a first dopant concentration, and the second portion is not doped with silicon or is doped with silicon at a second dopant concentration lower than the first dopant concentration.
    Type: Application
    Filed: December 9, 2022
    Publication date: April 6, 2023
    Inventors: Yen-Tien Tung, Szu-Wei Huang, Zhi-Ren Xiao, Yin-Chuan Chuang, Yung-Chien Huang, Kuan-Ting Liu, Tzer-Min Shen, Chung-Wei Wu, Zhiqiang Wu
  • Patent number: 11527622
    Abstract: A method includes providing a structure having a substrate and a channel layer over the substrate; forming a high-k gate dielectric layer over the channel layer; forming a work function metal layer over the high-k gate dielectric layer; forming a silicide layer over the work function metal layer; annealing the structure such that a first portion of the work function metal layer that interfaces with the high-k gate dielectric layer is doped with silicon elements from the silicide layer; removing the silicide layer; and forming a bulk metal layer over the work function metal layer.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: December 13, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yen-Tien Tung, Szu-Wei Huang, Zhi-Ren Xiao, Yin-Chuan Chuang, Yung-Chien Huang, Kuan-Ting Liu, Tzer-Min Shen, Chung-Wei Wu, Zhiqiang Wu
  • Publication number: 20220262685
    Abstract: Embodiments disclosed herein relate to a pre-deposition treatment of materials utilized in metal gates of different transistors on a semiconductor substrate. In an embodiment, a method includes exposing a first metal-containing layer of a first device and a second metal-containing layer of a second device to a reactant to form respective monolayers on the first and second metal-containing layers. The first and second devices are on a substrate. The first device includes a first gate structure including the first metal-containing layer. The second device includes a second gate structure including the second metal-containing layer different from the second metal-containing layer. The monolayers on the first and second metal-containing layers are exposed to an oxidant to provide a hydroxyl group (—OH) terminated surface for the monolayers. Thereafter, a third metal-containing layer is formed on the —OH terminated surfaces of the monolayers on the first and second metal-containing layers.
    Type: Application
    Filed: May 2, 2022
    Publication date: August 18, 2022
    Inventors: Cheng-Yen Tsai, Chung-Chiang Wu, Tai-Wei Hwang, Hung-Chin Chung, Wei-Chin Lee, Da-Yuan Lee, Ching-Hwanq Su, Yin-Chuan Chuang, Kuan-Ting Liu
  • Publication number: 20220223693
    Abstract: A method includes providing a structure having a substrate and a channel layer over the substrate; forming a high-k gate dielectric layer over the channel layer; forming a work function metal layer over the high-k gate dielectric layer; forming a silicide layer over the work function metal layer; annealing the structure such that a first portion of the work function metal layer that interfaces with the high-k gate dielectric layer is doped with silicon elements from the silicide layer; removing the silicide layer; and forming a bulk metal layer over the work function metal layer.
    Type: Application
    Filed: January 8, 2021
    Publication date: July 14, 2022
    Inventors: Yen-Tien Tung, Szu-Wei Huang, Zhi-Ren Xiao, Yin-Chuan Chuang, Yung-Chien Huang, Kuan-Ting Liu, Tzer-Min Shen, Chung-Wei Wu, Zhiqiang Wu
  • Patent number: 11322411
    Abstract: Embodiments disclosed herein relate to a pre-deposition treatment of materials utilized in metal gates of different transistors on a semiconductor substrate. In an embodiment, a method includes exposing a first metal-containing layer of a first device and a second metal-containing layer of a second device to a reactant to form respective monolayers on the first and second metal-containing layers. The first and second devices are on a substrate. The first device includes a first gate structure including the first metal-containing layer. The second device includes a second gate structure including the second metal-containing layer different from the second metal-containing layer. The monolayers on the first and second metal-containing layers are exposed to an oxidant to provide a hydroxyl group (—OH) terminated surface for the monolayers. Thereafter, a third metal-containing layer is formed on the —OH terminated surfaces of the monolayers on the first and second metal-containing layers.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: May 3, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Yen Tsai, Chung-Chiang Wu, Tai-Wei Hwang, Hung-Chin Chung, Wei-Chin Lee, Da-Yuan Lee, Ching-Hwanq Su, Yin-Chuan Chuang, Kuan-Ting Liu
  • Patent number: 11302582
    Abstract: Embodiments disclosed herein relate to a pre-deposition treatment of materials utilized in metal gates of different transistors on a semiconductor substrate. In an embodiment, a method includes exposing a first metal-containing layer of a first device and a second metal-containing layer of a second device to a reactant to form respective monolayers on the first and second metal-containing layers. The first and second devices are on a substrate. The first device includes a first gate structure including the first metal-containing layer. The second device includes a second gate structure including the second metal-containing layer different from the second metal-containing layer. The monolayers on the first and second metal-containing layers are exposed to an oxidant to provide a hydroxyl group (—OH) terminated surface for the monolayers. Thereafter, a third metal-containing layer is formed on the —OH terminated surfaces of the monolayers on the first and second metal-containing layers.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: April 12, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Yen Tsai, Chung-Chiang Wu, Tai-Wei Hwang, Hung-Chin Chung, Wei-Chin Lee, Da-Yuan Lee, Ching-Hwanq Su, Yin-Chuan Chuang, Kuan-Ting Liu
  • Publication number: 20200091006
    Abstract: Embodiments disclosed herein relate to a pre-deposition treatment of materials utilized in metal gates of different transistors on a semiconductor substrate. In an embodiment, a method includes exposing a first metal-containing layer of a first device and a second metal-containing layer of a second device to a reactant to form respective monolayers on the first and second metal-containing layers. The first and second devices are on a substrate. The first device includes a first gate structure including the first metal-containing layer. The second device includes a second gate structure including the second metal-containing layer different from the second metal-containing layer. The monolayers on the first and second metal-containing layers are exposed to an oxidant to provide a hydroxyl group (—OH) terminated surface for the monolayers. Thereafter, a third metal-containing layer is formed on the —OH terminated surfaces of the monolayers on the first and second metal-containing layers.
    Type: Application
    Filed: November 18, 2019
    Publication date: March 19, 2020
    Inventors: Cheng-Yen Tsai, Chung-Chiang Wu, Tai-Wei Hwang, Hung-Chin Chung, Wei-Chin Lee, Da-Yuan Lee, Ching-Hwanq Su, Yin-Chuan Chuang, Kuan-Ting Liu
  • Publication number: 20200083108
    Abstract: Embodiments disclosed herein relate to a pre-deposition treatment of materials utilized in metal gates of different transistors on a semiconductor substrate. In an embodiment, a method includes exposing a first metal-containing layer of a first device and a second metal-containing layer of a second device to a reactant to form respective monolayers on the first and second metal-containing layers. The first and second devices are on a substrate. The first device includes a first gate structure including the first metal-containing layer. The second device includes a second gate structure including the second metal-containing layer different from the second metal-containing layer. The monolayers on the first and second metal-containing layers are exposed to an oxidant to provide a hydroxyl group (—OH) terminated surface for the monolayers. Thereafter, a third metal-containing layer is formed on the —OH terminated surfaces of the monolayers on the first and second metal-containing layers.
    Type: Application
    Filed: November 18, 2019
    Publication date: March 12, 2020
    Inventors: Cheng-Yen Tsai, Chung-Chiang Wu, Tai-Wei Hwang, Hung-Chin Chung, Wei-Chin Lee, Da-Yuan Lee, Ching-Hwanq Su, Yin-Chuan Chuang, Kuan-Ting Liu
  • Patent number: 10504789
    Abstract: Embodiments disclosed herein relate to a pre-deposition treatment of materials utilized in metal gates of different transistors on a semiconductor substrate. In an embodiment, a method includes exposing a first metal-containing layer of a first device and a second metal-containing layer of a second device to a reactant to form respective monolayers on the first and second metal-containing layers. The first and second devices are on a substrate. The first device includes a first gate structure including the first metal-containing layer. The second device includes a second gate structure including the second metal-containing layer different from the second metal-containing layer. The monolayers on the first and second metal-containing layers are exposed to an oxidant to provide a hydroxyl group (—OH) terminated surface for the monolayers. Thereafter, a third metal-containing layer is formed on the —OH terminated surfaces of the monolayers on the first and second metal-containing layers.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: December 10, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Yen Tsai, Chung-Chiang Wu, Tai-Wei Hwang, Hung-Chin Chung, Wei-Chin Lee, Da-Yuan Lee, Ching-Hwanq Su, Yin-Chuan Chuang, Kuan-Ting Liu
  • Publication number: 20190371675
    Abstract: Embodiments disclosed herein relate to a pre-deposition treatment of materials utilized in metal gates of different transistors on a semiconductor substrate. In an embodiment, a method includes exposing a first metal-containing layer of a first device and a second metal-containing layer of a second device to a reactant to form respective monolayers on the first and second metal-containing layers. The first and second devices are on a substrate. The first device includes a first gate structure including the first metal-containing layer. The second device includes a second gate structure including the second metal-containing layer different from the second metal-containing layer. The monolayers on the first and second metal-containing layers are exposed to an oxidant to provide a hydroxyl group (—OH) terminated surface for the monolayers. Thereafter, a third metal-containing layer is formed on the —OH terminated surfaces of the monolayers on the first and second metal-containing layers.
    Type: Application
    Filed: May 30, 2018
    Publication date: December 5, 2019
    Inventors: Cheng-Yen Tsai, Chung-Chiang Wu, Tai-Wei Hwang, Hung-Chin Chung, Wei-Chin Lee, Da-Yuan Lee, Ching-Hwanq Su, Yin-Chuan Chuang, Kuan-Ting Liu