Patents by Inventor Yin FAN

Yin FAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250079212
    Abstract: The present disclosure is directed to a stocker utilizing one or more storage carriers to optimize the utilization of a storage compartment within the stocker. The stocker includes one or more storage towers each including one or more shelves that may be moved from a closed position to an opened position by being pulled outward by a hook of a forking structure. This forking structure is configured to lift up a corresponding storage carrier off the shelf to be transported to a storage carrier load port to position one or more workpieces or toolpieces within the storage carrier, which is then transported back to the corresponding shelf for storage. The utilization of the forking structure along with the pull out shelves allows for a large number of storage carriers to be stored within the storage compartment of the stocker.
    Type: Application
    Filed: November 19, 2024
    Publication date: March 6, 2025
    Inventors: Rong Syuan FAN, Ching-Jung CHANG, Chi-Feng TUNG, Hsiang Yin SHEN
  • Patent number: 12232425
    Abstract: A magnetoresistive random access memory (MRAM) device includes a first array region and a second array region on a substrate, a first magnetic tunneling junction (MTJ) on the first array region, a first top electrode on the first MTJ, a second MTJ on the second array region, and a second top electrode on the second MTJ. Preferably, the first top electrode and the second top electrode include different nitrogen to titanium (N/Ti) ratios.
    Type: Grant
    Filed: November 21, 2023
    Date of Patent: February 18, 2025
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Si-Han Tsai, Dong-Ming Wu, Chen-Yi Weng, Ching-Hua Hsu, Ju-Chun Fan, Yi-Yu Lin, Che-Wei Chang, Po-Kai Hsu, Jing-Yin Jhang
  • Patent number: 9911594
    Abstract: Methods for forming fin structure with desired materials formed on different locations of the fin structure using a selective deposition process for three dimensional (3D) stacking of fin field effect transistor (FinFET) for semiconductor chips are provided. In one embodiment, a method of forming a structure with desired materials on a substrate includes forming a patterned self-assembled monolayer on a circumference of a structure formed on a substrate, wherein the patterned self-assembled monolayer includes a treated layer formed among a self-assembled monolayer, and performing an atomic layer deposition process to form a material layer predominantly on the self-assembled monolayer from the patterned self-assembled monolayer.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: March 6, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Srinivas D. Nemani, Ellie Y. Yieh, Ludovic Godet, Yin Fan
  • Patent number: 9754791
    Abstract: Methods for selectively depositing different materials at different locations on a substrate are provided. A selective deposition process may form different materials on different surfaces, e.g., different portions of the substrate, depending on the material properties of the underlying layer being deposited on. Ion implantation processes may be used to modify materials disposed on the substrate. The ions modify surface properties of the substrate to enable the subsequent selective deposition process. A substrate having a mask disposed thereon may be subjected to an on implantation process to modify the mask and surfaces of the substrate exposed by the mask. The mask may be removed which results in a substrate having regions of implanted and non-implanted materials. A subsequent deposition process may be performed to selectively deposit on either the implanted or non-implanted regions of the substrate.
    Type: Grant
    Filed: April 7, 2015
    Date of Patent: September 5, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Ludovic Godet, Yin Fan, Ellie Y. Yieh, Srinivas D. Nemani
  • Publication number: 20170053797
    Abstract: Methods for forming fin structure with desired materials formed on different locations of the fin structure using a selective deposition process for three dimensional (3D) stacking of fin field effect transistor (FinFET) for semiconductor chips are provided. In one embodiment, a method of forming a structure with desired materials on a substrate includes forming a patterned self-assembled monolayer on a circumference of a structure formed on a substrate, wherein the patterned self-assembled monolayer includes a treated layer formed among a self-assembled monolayer, and performing an atomic layer deposition process to form a material layer predominantly on the self-assembled monolayer from the patterned self-assembled monolayer.
    Type: Application
    Filed: November 8, 2016
    Publication date: February 23, 2017
    Inventors: Srinivas D. NEMANI, Ellie Y. YIEH, Ludovic GODET, Yin FAN
  • Patent number: 9515166
    Abstract: Methods for forming fin structure with desired materials formed on different locations of the fin structure using a selective deposition process for three dimensional (3D) stacking of fin field effect transistor (FinFET) for semiconductor chips are provided. In one embodiment, a method of forming a structure with desired materials on a substrate includes forming a patterned self-assembled monolayer on a circumference of a structure formed on a substrate, wherein the patterned self-assembled monolayer includes a treated layer formed among a self-assembled monolayer, and performing an atomic layer deposition process to form a material layer predominantly on the self-assembled monolayer from the patterned self-assembled monolayer.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: December 6, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Srinivas D. Nemani, Ellie Y. Yieh, Ludovic Godet, Yin Fan
  • Publication number: 20160233100
    Abstract: Methods for selectively depositing different materials at diffe ent locations on a substrate are provided. A selective deposition process may form different materials on different surfaces, e.g., different portions of the substrate, depending on the material properties of the underlying layer being deposited on on implantation processes may be used to modify materials disposed on the substrate. The ions modify surface properties of the substrate to enable the subsequent selective deposition process. A substrate having a mask disposed thereon may be subjected to an on implantation process to modify the mask and surfaces of the substrate exposed by the mask. The mask may be removed which results in a substrate having regions of implanted and non-implanted materials. A subsequent deposition process may be performed to selectively deposit on either the implanted or non-implanted regions of the substrate.
    Type: Application
    Filed: April 7, 2015
    Publication date: August 11, 2016
    Inventors: Ludovic GODET, Yin FAN, Ellie Y. YIEH, Srinivas D. NEMANI
  • Patent number: 9385219
    Abstract: Methods for forming fin structures with desired materials formed on different locations of the fin structure using a selective deposition process for fin field effect transistors (FinFETs) are provided. In one embodiment, a method of forming a structure with desired materials on a substrate includes depositing a first material on a substrate having a three-dimensional (3D) structure formed thereon while performing an implantation process to dope a first region of the 3D structure. The first material may be removed and a second material may be deposited on the 3D structure. The second material may selectively grow on a second region of the 3D structure.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: July 5, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Ellie Y. Yieh, Srinivas D. Nemani, Ludovic Godet, Yin Fan, Tristan Ma
  • Publication number: 20160005839
    Abstract: Methods for forming fin structures with desired materials formed on different locations of the fin structure using a selective deposition process for fin field effect transistors (FinFETs) are provided. In one embodiment, a method of forming a structure with desired materials on a substrate includes depositing a first material on a substrate having a three-dimensional (3D) structure formed thereon while performing an implantation process to dope a first region of the 3D structure. The first material may be removed and a second material may be deposited on the 3D structure. The second material may selectively grow on a second region of the 3D structure.
    Type: Application
    Filed: June 29, 2015
    Publication date: January 7, 2016
    Inventors: Ellie Y. YIEH, Srinivas D. NEMANI, Ludovic GODET, Yin FAN, Tristan MA
  • Publication number: 20150294863
    Abstract: Methods for forming fin structure with desired materials formed on different locations of the fin structure using a selective deposition process for three dimensional (3D) stacking of fin field effect transistor (FinFET) for semiconductor chips are provided. In one embodiment, a method of forming a structure with desired materials on a substrate includes forming a patterned self-assembled monolayer on a circumference of a structure formed on a substrate, wherein the patterned self-assembled monolayer includes a treated layer formed among a self-assembled monolayer, and performing an atomic layer deposition process to form a material layer predominantly on the self-assembled monolayer from the patterned self-assembled monolayer.
    Type: Application
    Filed: May 13, 2014
    Publication date: October 15, 2015
    Inventors: Srinivas D. NEMANI, Ellie Y. YIEH, Ludovic GODET, Yin FAN
  • Patent number: 8228022
    Abstract: A solar energy control system includes a storage battery, a solar energy operated absorption board, a load, a controller, a first ZigBee module, a second ZigBee module, and a monitoring device. The absorption board is connected to the battery for charging the battery. The load is connected to the battery for receiving a working voltage from the battery. The controller is connected to the absorption board to detect a voltage of the absorption board, and control the charging status according to the detected voltage. The first ZigBee module is connected to the monitoring device. The second ZigBee module is connected to the controller. The monitoring device monitors a status of the controller and sends control instructions to the controller through the first and second ZigBee modules.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: July 24, 2012
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Yin-Fan Chen
  • Publication number: 20090160395
    Abstract: A solar energy control system includes a storage battery, a solar energy operated absorption board, a load, a controller, a first ZigBee module, a second ZigBee module, and a monitoring device. The absorption board is connected to the battery for charging the battery. The load is connected to the battery for receiving a working voltage from the battery. The controller is connected to the absorption board to detect a voltage of the absorption board, and control the charging status according to the detected voltage. The first ZigBee module is connected to the monitoring device. The second ZigBee module is connected to the controller. The monitoring device monitors a status of the controller and sends control instructions to the controller through the first and second ZigBee modules.
    Type: Application
    Filed: March 4, 2008
    Publication date: June 25, 2009
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: YIN-FAN CHEN
  • Publication number: 20080117439
    Abstract: An optical navigation system and method of estimating motion uses an optical structure configured to collimate light propagating along a first direction and to internally reflect the light off an output reflective surface of the optical structure downward along a second direction perpendicular to the first direction toward a target surface. The optical structure is also configured to transmit the light reflected from the target surface through the output reflective surface toward an image sensor.
    Type: Application
    Filed: December 20, 2006
    Publication date: May 22, 2008
    Inventors: Yat Kheng Leong, Hun Kwang Lee, Sai Mun Lee, Gladys Su Yin Fan