Patents by Inventor Ying-Chi Lin

Ying-Chi Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240181376
    Abstract: A manufacturing method of a meltblown fiber membrane includes the following step. A meltblown film is made to pass between a first pressing roller and a second pressing roller, such that a calendering process is performed on the meltblown film, in which the meltblown film includes a plurality of meltblown fibers, each of the meltblown fibers includes a high-fluidity polyester and a modified polyester, a melt index of the high-fluidity polyester under a temperature of 230° C. ranges from 350 g/10 min to 550 g/10 min, a melt index of the modified polyester under a temperature of 230° C. ranges from 200 g/10 min to 400 g/10 min, and a roller temperature of each of the first pressing roller and the second pressing roller ranges from 100° C. to 155° C.
    Type: Application
    Filed: November 29, 2023
    Publication date: June 6, 2024
    Inventors: Ying-Chi LIN, Wei-Hung CHEN
  • Publication number: 20240167204
    Abstract: A breathable and waterproof non-woven fabric is manufactured by a manufacturing method including the following steps. Performing a kneading process on 87 to 91 parts by weight of a polyester, 5 to 7 parts by weight of a water repellent, and 3 to 6 parts by weight of a flow promoter to form a mixture, in which the polyester has a melt index between 350 g/10 min and 1310 g/10 min at a temperature of 270° C., and the mixture has a melt index between 530 g/10 min and 1540 g/10 min at a temperature of 270° C. Performing a melt-blowing process on the mixture, such that the flow promoter is volatilized and a melt-blown fiber is formed, in which the melt-blown fiber has a fiber body and the water repellent disposed on the fiber body with a particle size (D90) between 350 nm and 450 nm.
    Type: Application
    Filed: January 30, 2024
    Publication date: May 23, 2024
    Inventors: Ying-Chi LIN, Wei-Hung CHEN, Li-Chen CHU, Rih-Sheng CHIANG
  • Publication number: 20240158968
    Abstract: A breathable and waterproof non-woven fabric is manufactured by a manufacturing method including the following steps. Performing a kneading process on 87 to 91 parts by weight of a polyester, 5 to 7 parts by weight of a water repellent, and 3 to 6 parts by weight of a flow promoter to form a mixture, in which the polyester has a melt index between 350 g/10 min and 1310 g/10 min at a temperature of 270° C., and the mixture has a melt index between 530 g/10 min and 1540 g/10 min at a temperature of 270° C. Performing a melt-blowing process on the mixture, such that the flow promoter is volatilized and a melt-blown fiber is formed, in which the melt-blown fiber has a fiber body and the water repellent disposed on the fiber body with a particle size (D90) between 350 nm and 450 nm.
    Type: Application
    Filed: January 25, 2024
    Publication date: May 16, 2024
    Inventors: Ying-Chi LIN, Wei-Hung CHEN, Li-Chen CHU, Rih-Sheng CHIANG
  • Patent number: 11952690
    Abstract: A breathable and waterproof non-woven fabric is manufactured by a manufacturing method including the following steps. Performing a kneading process on 87 to 91 parts by weight of a polyester, 5 to 7 parts by weight of a water repellent, and 3 to 6 parts by weight of a flow promoter to form a mixture, in which the polyester has a melt index between 350 g/10 min and 1310 g/10 min at a temperature of 270° C., and the mixture has a melt index between 530 g/10 min and 1540 g/10 min at a temperature of 270° C. Performing a melt-blowing process on the mixture, such that the flow promoter is volatilized and a melt-blown fiber is formed, in which the melt-blown fiber has a fiber body and the water repellent disposed on the fiber body with a particle size (D90) between 350 nm and 450 nm.
    Type: Grant
    Filed: December 1, 2021
    Date of Patent: April 9, 2024
    Assignee: TAIWAN TEXTILE RESEARCH INSTITUTE
    Inventors: Ying-Chi Lin, Wei-Hung Chen, Li-Chen Chu, Rih-Sheng Chiang
  • Publication number: 20220178060
    Abstract: A breathable and waterproof non-woven fabric is manufactured by a manufacturing method including the following steps. Performing a kneading process on 87 to 91 parts by weight of a polyester, 5 to 7 parts by weight of a water repellent, and 3 to 6 parts by weight of a flow promoter to form a mixture, in which the polyester has a melt index between 350 g/10 min and 1310 g/10 min at a temperature of 270° C., and the mixture has a melt index between 530 g/10 min and 1540 g/10 min at a temperature of 270° C. Performing a melt-blowing process on the mixture, such that the flow promoter is volatilized and a melt-blown fiber is formed, in which the melt-blown fiber has a fiber body and the water repellent disposed on the fiber body with a particle size (D90) between 350 nm and 450 nm.
    Type: Application
    Filed: December 1, 2021
    Publication date: June 9, 2022
    Inventors: Ying-Chi LIN, Wei-Hung CHEN, Li-Chen CHU, Rih-Sheng CHIANG
  • Patent number: 8489942
    Abstract: A memory management method for a rewritable non-volatile memory module including a plurality of physical unit groups is provided, and each physical unit group includes first physical units. The method includes: grouping the physical unit groups into a first and second areas, setting the physical unit groups of the first area in a first program mode indicating that all physical units are programmable, and setting the physical unit groups of the second area in a second program mode indicating that only the first physical units are programmable. The method also includes: when a physical unit group in the first area is damaged, transforming a physical unit group from the first program mode to the second program mode and the physical unit group is unable to be set back in the first program mode. Accordingly, the lifespan of the rewritable non-volatile memory module is increased.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: July 16, 2013
    Assignee: Phison Electronics Corp.
    Inventors: Kim-Hon Wong, Ying-Chi Lin
  • Publication number: 20090011471
    Abstract: Nucleic acid sequences encoding at least a portion of a polypeptide are directly incorporated into a plasmid by DNA polymerization or reverse transcription of a nucleic acid template. In particularly preferred embodiments, nucleic acid sequences encoding at least a portion of an antibody are directly incorporated into a plasmid by reverse transcription of messenger RNA (mRNA).
    Type: Application
    Filed: June 12, 2007
    Publication date: January 8, 2009
    Inventors: Katherine S. Bowdish, Shana Frederickson, Ying-Chi Lin, Mark Renshaw, Martha Wild, John McWhirter
  • Patent number: 7306906
    Abstract: Methods of amplifying nucleic acid have now been discovered which include the steps of: a) annealing a primer to a template nucleic acid sequence, the primer having a first portion which anneals to the template and a second portion of predetermined sequence; b) synthesizing a polynucleotide that anneals to and is complementary to the portion of the template between the location at which the first portion of the primer anneals to the template and the end of the template, the polynucleotide having a first end and a second end, wherein the first end incorporates the primer; c) separating the polynucleotide synthesized in step (b) from the template; d) annealing a nested oligonucleotide to the second end of the polynucleotide synthesized in step (b), the nested oligonucleotide having a first portion that anneals to the second end of the polynucleotide and a second portion having the same predetermined sequence as the second portion of the primer; e) extending the polynucleotide synthesized in step (b) to provide
    Type: Grant
    Filed: September 19, 2002
    Date of Patent: December 11, 2007
    Assignee: Alexion Pharmaceuticals, Inc.
    Inventors: Toshiaki Maruyama, Shana Frederickson, Katherine S. Bowdish, Mark Renshaw, Ying-Chi Lin
  • Publication number: 20040072164
    Abstract: Methods of amplifying nucleic acid have now been discovered which include the steps of: a) annealing a primer to a template nucleic acid sequence, the primer having a first portion which anneals to the template and a second portion of predetermined sequence; b) synthesizing a polynucleotide that anneals to and is complementary to the portion of the template between the location at which the first portion of the primer anneals to the template and the end of the template, the polynucleotide having a first end and a second end, wherein the first end incorporates the primer; c) separating the polynucleotide synthesized in step (b) from the template; d) annealing a nested oligonucleotide to the second end of the polynucleotide synthesized in step (b), the nested oligonucleotide having a first portion that anneals to the second end of the polynucleotide and a second portion having the same predetermined sequence as the second portion of the primer; e) extending the polynucleotide synthesized in step (b) to provide
    Type: Application
    Filed: September 19, 2002
    Publication date: April 15, 2004
    Inventors: Toshiaki Maruyama, Shana Frederickson, Katherine S. Bowdish, Mark Renshaw, Ying-Chi Lin
  • Publication number: 20030049731
    Abstract: Nucleic acid sequences encoding at least a portion of a polypeptide are directly incorporated into a plasmid by DNA polymerization or reverse transcription of a nucleic acid template. In particularly preferred embodiments, nucleic acid sequences encoding at least a portion of an antibody are directly incorporated into a plasmid by reverse transcription of messenger RNA (mRNA).
    Type: Application
    Filed: December 5, 2001
    Publication date: March 13, 2003
    Inventors: Katherine S. Bowdish, Shana Frederickson, Ying-Chi Lin, Mark Renshaw, Martha Wild, John McWhirter
  • Patent number: RE41365
    Abstract: Templates that are engineered to contain a predetermined sequence and a hairpin structure are provided by a nested oligonucleotide extension reaction. The engineered template allows Single Primer Amplification (SPA) to amplify a target sequence within the engineered template. In particularly useful embodiments, the target sequences from the engineered templates are cloned into expression vehicles to provide a library of polypeptides or proteins, such as, for example, an antibody library.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: June 1, 2010
    Assignee: Alexion Pharmaceuticals, Inc.
    Inventors: Katherine S. Bowdish, Shana Frederickson, John McWhirter, Toshiaki Maruyama, Ying-Chi Lin