Patents by Inventor YING PANG

YING PANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240097579
    Abstract: Disclosed are a parallel multi-converter and a capacity design method therefor. A first output current model and a second output current model are generated by respectively acquiring electrical parameters of an inductive voltage source converter and a capacitive voltage source converter, and the first output current model and the second output current model are integrated under the same output current condition, so that it may be ensured that the inductive voltage source converter and the capacitive voltage source converter have the same current generating ability; meanwhile, a coupling inductance relationship between the inductive voltage source converter and the capacitive voltage source converter is combined to further obtain the optimal capacity value of the inductive voltage source converter and the optimal capacity value of the capacitive voltage source converter. Therefore, the L-VSC and the LC-VSC have the same current generating ability, and the multi-converter has lower total voltage capacity.
    Type: Application
    Filed: September 2, 2022
    Publication date: March 21, 2024
    Applicant: University of Macau
    Inventors: Man-Chung WONG, Ying PANG
  • Patent number: 11476164
    Abstract: Integrated circuit structures having differentiated workfunction layers are described. In an example, an integrated circuit structure includes a first gate electrode above a substrate. The first gate electrode includes a first workfunction material layer. A second gate electrode is above the substrate. The second gate electrode includes a second workfunction material layer different in composition from the first workfunction material layer. The second gate electrode does not include the first workfunction material layer, and the first gate electrode does not include the second workfunction material layer. A third gate electrode above is the substrate. The third gate electrode includes a third workfunction material layer different in composition from the first workfunction material layer and the second workfunction material layer. The third gate electrode does not include the first workfunction material layer and does not include the second workfunction material layer.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: October 18, 2022
    Assignee: Intel Corporation
    Inventors: Ying Pang, Florian Gstrein, Dan S. Lavric, Ashish Agrawal, Robert Niffenegger, Padmanava Sadhukhan, Robert W. Heussner, Joel M. Gregie
  • Patent number: 10755984
    Abstract: Techniques are disclosed for customization of fin-based transistor devices to provide a diverse range of channel configurations and/or material systems, and within the same integrated circuit die. Sacrificial fins are removed via wet and/or dry etch chemistries configured to provide trench bottoms that are non-faceted and have no or otherwise low-ion damage. The trench is then filled with desired semiconductor material. A trench bottom having low-ion damage and non-faceted morphology encourages a defect-free or low defect interface between the substrate and the replacement material. In an embodiment, each of a first set of the sacrificial silicon fins is recessed and replaced with a p-type material, and each of a second set of the sacrificial fins is recessed and replaced with an n-type material. Another embodiment may include a combination of native fins (e.g., Si) and replacement fins (e.g., SiGe). Another embodiment may include replacement fins all of the same configuration.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: August 25, 2020
    Assignee: Intel Corporation
    Inventors: Glenn A. Glass, Ying Pang, Nabil G. Mistkawi, Anand S. Murthy, Tahir Ghani, Huang-Lin Chao
  • Publication number: 20200219775
    Abstract: Integrated circuit structures having differentiated workfunction layers are described. In an example, an integrated circuit structure includes a first gate electrode above a substrate. The first gate electrode includes a first workfunction material layer. A second gate electrode is above the substrate. The second gate electrode includes a second workfunction material layer different in composition from the first workfunction material layer. The second gate electrode does not include the first workfunction material layer, and the first gate electrode does not include the second workfunction material layer. A third gate electrode above is the substrate. The third gate electrode includes a third workfunction material layer different in composition from the first workfunction material layer and the second workfunction material layer. The third gate electrode does not include the first workfunction material layer and does not include the second workfunction material layer.
    Type: Application
    Filed: September 26, 2017
    Publication date: July 9, 2020
    Inventors: Ying PANG, Florian GSTREIN, Dan S. LAVRIC, Ashish AGRAWAL, Robert NIFFENEGGER, Padmanava SADHUKHAN, Robert W. HEUSSNER, Joel M. GREGIE
  • Patent number: 10541334
    Abstract: Techniques are disclosed for improved integration of germanium (Ge)-rich p-MOS source/drain contacts to, for example, reduce contact resistance. The techniques include depositing the p-type Ge-rich layer directly on a silicon (Si) surface in the contact trench location, because Si surfaces are favorable for deposition of high quality conductive Ge-rich materials. In one example method, the Ge-rich layer is deposited on a surface of the Si substrate in the source/drain contact trench locations, after removing a sacrificial silicon germanium (SiGe) layer previously deposited in the source/drain locations. In another example method, the Ge-rich layer is deposited on a Si cladding layer in the contact trench locations, where the Si cladding layer is deposited on a functional p-type SiGe layer. In some cases, the Ge-rich layer comprises at least 50% Ge (and may contain tin (Sn) and/or Si) and is boron (B) doped at levels above 1E20 cm?3.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: January 21, 2020
    Assignee: INTEL CORPORATION
    Inventors: Glenn A. Glass, Anand S. Murthy, Tahir Ghani, Ying Pang, Nabil G. Mistkawi
  • Patent number: 10510848
    Abstract: Techniques are disclosed for reducing off-state leakage of fin-based transistors through the use of a sub-fin passivation layer. In some cases, the techniques include forming sacrificial fins in a bulk silicon substrate and depositing and planarizing shallow trench isolation (STI) material, removing and replacing the sacrificial silicon fins with a replacement material (e.g., SiGe or III-V material), removing at least a portion of the STI material to expose the sub-fin areas of the replacement fins, applying a passivating layer/treatment/agent to the exposed sub-fins, and re-depositing and planarizing additional STI material. Standard transistor forming processes can then be carried out to complete the transistor device. The techniques generally provide the ability to add arbitrary passivation layers for structures that are grown in STI-based trenches. The passivation layer inhibits sub-fin source-to-drain (and drain-to-source) current leakage.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: December 17, 2019
    Assignee: Intel Corporation
    Inventors: Glenn A. Glass, Ying Pang, Anand S. Murthy, Tahir Ghani, Karthik Jambunathan
  • Publication number: 20190305102
    Abstract: A PMOS gate structure is described. The PMOS gate structure includes a trench, a high-k metal layer on a bottom and on sidewalls of the trench and a flourine free tungsten layer on the surface of the high-k metal. The PMOS gate structure also includes a metal layer in a space in the n-type work function metal.
    Type: Application
    Filed: April 2, 2018
    Publication date: October 3, 2019
    Inventors: Dan S. LAVRIC, Ying PANG
  • Patent number: 10274458
    Abstract: A method for detecting a surface coating performance of a cathode active material comprising: providing an acid solution with a predetermined concentration; putting a coated cathode active material in a container; adding the acid solution into the container until the coated cathode active material is completely soaked to form a solid liquid mixture; sealing the container, heating and stirring the solid liquid mixture, and recording a series of pH values of a liquid phase of the solid liquid mixture at different points in time; and determining the surface coating performance of the coated cathode active material by comparing the recorded pH values with standard pH values. A method for detecting a surface coating performance of a cathode active material by detecting metal ion concentrations in the solid liquid mixture is also provided.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: April 30, 2019
    Assignee: TSINGHUA UNIVERSITY
    Inventors: Li Wang, Xiang-Ming He, Xiao-Ying Pang
  • Publication number: 20190109234
    Abstract: Techniques are disclosed for improved integration of germanium (Ge)-rich p-MOS source/drain contacts to, for example, reduce contact resistance. The techniques include depositing the p-type Ge-rich layer directly on a silicon (Si) surface in the contact trench location, because Si surfaces are favorable for deposition of high quality conductive Ge-rich materials. In one example method, the Ge-rich layer is deposited on a surface of the Si substrate in the source/drain contact trench locations, after removing a sacrificial silicon germanium (SiGe) layer previously deposited in the source/drain locations. In another example method, the Ge-rich layer is deposited on a Si cladding layer in the contact trench locations, where the Si cladding layer is deposited on a functional p-type SiGe layer. In some cases, the Ge-rich layer comprises at least 50% Ge (and may contain tin (Sn) and/or Si) and is boron (B) doped at levels above 1E20 cm?3.
    Type: Application
    Filed: November 26, 2018
    Publication date: April 11, 2019
    Applicant: INTEL CORPORATION
    Inventors: GLENN A. GLASS, ANAND S. MURTHY, TAHIR GHANI, YING PANG, NABIL G. MISTKAWI
  • Patent number: 10147817
    Abstract: Techniques are disclosed for improved integration of germanium (Ge)-rich p-MOS source/drain contacts to, for example, reduce contact resistance. The techniques include depositing the p-type Ge-rich layer directly on a silicon (Si) surface in the contact trench location, because Si surfaces are favorable for deposition of high quality conductive Ge-rich materials. In one example method, the Ge-rich layer is deposited on a surface of the Si substrate in the source/drain contact trench locations, after removing a sacrificial silicon germanium (SiGe) layer previously deposited in the source/drain locations. In another example method, the Ge-rich layer is deposited on a Si cladding layer in the contact trench locations, where the Si cladding layer is deposited on a functional p-type SiGe layer. In some cases, the Ge-rich layer comprises at least 50% Ge (and may contain tin (Sn) and/or Si) and is boron (B) doped at levels above 1E20 cm?3.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: December 4, 2018
    Assignee: INTEL CORPORATION
    Inventors: Glenn A. Glass, Anand S. Murthy, Tahir Ghani, Ying Pang, Nabil G. Mistkawi
  • Publication number: 20180238828
    Abstract: A method for detecting a surface coating performance of a cathode active material comprising: providing an acid solution with a predetermined concentration; putting a coated cathode active material in a container; adding the acid solution into the container until the coated cathode active material is completely soaked to form a solid liquid mixture; sealing the container, heating and stirring the solid liquid mixture, and recording a series of pH values of a liquid phase of the solid liquid mixture at different points in time; and determining the surface coating performance of the coated cathode active material by comparing the recorded pH values with standard pH values. A method for detecting a surface coating performance of a cathode active material by detecting metal ion concentrations in the solid liquid mixture is also provided.
    Type: Application
    Filed: April 17, 2018
    Publication date: August 23, 2018
    Applicant: Tsinghua University
    Inventors: LI WANG, XIANG-MING HE, XIAO-YING PANG
  • Publication number: 20180197789
    Abstract: Techniques are disclosed for customization of fin-based transistor devices to provide a diverse range of channel configurations and/or material systems, and within the same integrated circuit die. Sacrificial fins are removed via wet and/or dry etch chemistries configured to provide trench bottoms that are non-faceted and have no or otherwise low-ion damage. The trench is then filled with desired semiconductor material. A trench bottom having low-ion damage and non-faceted morphology encourages a defect-free or low defect interface between the substrate and the replacement material. In an embodiment, each of a first set of the sacrificial silicon fins is recessed and replaced with a p-type material, and each of a second set of the sacrificial fins is recessed and replaced with an n-type material. Another embodiment may include a combination of native fins (e.g., Si) and replacement fins (e.g., SiGe). Another embodiment may include replacement fins all of the same configuration.
    Type: Application
    Filed: June 24, 2015
    Publication date: July 12, 2018
    Applicant: INTEL CORPORATION
    Inventors: GLENN A. GLASS, YING PANG, NABIL G. MISTKAWI, ANAND S. MURTHY, TAHIR GHANI, HUANG-LIN CHAO
  • Publication number: 20180151677
    Abstract: Techniques are disclosed for reducing off-state leakage of fin-based transistors through the use of a sub-fin passivation layer. In some cases, the techniques include forming sacrificial fins in a bulk silicon substrate and depositing and planarizing shallow trench isolation (STI) material, removing and replacing the sacrificial silicon fins with a replacement material (e.g., SiGe or III-V material), removing at least a portion of the STI material to expose the sub-fin areas of the replacement fins, applying a passivating layer/treatment/agent to the exposed sub-fins, and re-depositing and planarizing additional STI material. Standard transistor forming processes can then be carried out to complete the transistor device. The techniques generally provide the ability to add arbitrary passivation layers for structures that are grown in STI-based trenches. The passivation layer inhibits sub-fin source-to-drain (and drain-to-source) current leakage.
    Type: Application
    Filed: June 24, 2015
    Publication date: May 31, 2018
    Applicant: INTEL CORPORATION
    Inventors: GLENN A. GLASS, YING PANG, ANAND S. MURTHY, TAHIR GHANI, KARTHIK JAMBUNATHAN
  • Publication number: 20180145174
    Abstract: Techniques are disclosed for improved integration of germanium (Ge)-rich p-MOS source/drain contacts to, for example, reduce contact resistance. The techniques include depositing the p-type Ge-rich layer directly on a silicon (Si) surface in the contact trench location, because Si surfaces are favorable for deposition of high quality conductive Ge-rich materials. In one example method, the Ge-rich layer is deposited on a surface of the Si substrate in the source/drain contact trench locations, after removing a sacrificial silicon germanium (SiGe) layer previously deposited in the source/drain locations. In another example method, the Ge-rich layer is deposited on a Si cladding layer in the contact trench locations, where the Si cladding layer is deposited on a functional p-type SiGe layer. In some cases, the Ge-rich layer comprises at least 50% Ge (and may contain tin (Sn) and/or Si) and is boron (B) doped at levels above 1E20 cm?3.
    Type: Application
    Filed: January 2, 2018
    Publication date: May 24, 2018
    Applicant: INTEL CORPORATION
    Inventors: GLENN A. GLASS, ANAND S. MURTHY, TAHIR GHANI, YING PANG, NABIL G. MISTKAWI
  • Patent number: 9859424
    Abstract: Techniques are disclosed for improved integration of germanium (Ge)-rich p-MOS source/drain contacts to, for example, reduce contact resistance. The techniques include depositing the p-type Ge-rich layer directly on a silicon (Si) surface in the contact trench location, because Si surfaces are favorable for deposition of high quality conductive Ge-rich materials. In one example method, the Ge-rich layer is deposited on a surface of the Si substrate in the source/drain contact trench locations, after removing a sacrificial silicon germanium (SiGe) layer previously deposited in the source/drain locations. In another example method, the Ge-rich layer is deposited on a Si cladding layer in the contact trench locations, where the Si cladding layer is deposited on a functional p-type SiGe layer. In some cases, the Ge-rich layer comprises at least 50% Ge (and may contain tin (Sn) and/or Si) and is boron (B) doped at levels above 1E20 cm?3.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: January 2, 2018
    Assignee: INTEL CORPORATION
    Inventors: Glenn A. Glass, Anand S. Murthy, Tahir Ghani, Ying Pang, Nabil G. Mistkawi
  • Publication number: 20170012124
    Abstract: Techniques are disclosed for improved integration of germanium (Ge)-rich p-MOS source/drain contacts to, for example, reduce contact resistance. The techniques include depositing the p-type Ge-rich layer directly on a silicon (Si) surface in the contact trench location, because Si surfaces are favorable for deposition of high quality conductive Ge-rich materials. In one example method, the Ge-rich layer is deposited on a surface of the Si substrate in the source/drain contact trench locations, after removing a sacrificial silicon germanium (SiGe) layer previously deposited in the source/drain locations. In another example method, the Ge-rich layer is deposited on a Si cladding layer in the contact trench locations, where the Si cladding layer is deposited on a functional p-type SiGe layer. In some cases, the Ge-rich layer comprises at least 50% Ge (and may contain tin (Sn) and/or Si) and is boron (B) doped at levels above 1E20 cm?3.
    Type: Application
    Filed: March 21, 2014
    Publication date: January 12, 2017
    Applicant: INTEL CORPORATION
    Inventors: GLENN A. GLASS, ANAND S. MURTHY, TAHIR GHANI, YING PANG, NABIL G. MISTKAWI