Patents by Inventor Ying SHANG

Ying SHANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11961891
    Abstract: A semiconductor device includes a channel component of a transistor and a gate component disposed over the channel component. The gate component includes: a dielectric layer, a first work function metal layer disposed over the dielectric layer, a fill-metal layer disposed over the first work function metal layer, and a second work function metal layer disposed over the fill-metal layer.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: April 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Ru-Shang Hsiao, Ching-Hwanq Su, Pohan Kung, Ying Hsin Lu, I-Shan Huang
  • Patent number: 11949000
    Abstract: A method includes forming a dummy gate stack over a fin protruding from a semiconductor substrate, forming gate spacers on sidewalls of the dummy gate stack, forming source/features over portions of the fin, forming a gate trench between the gate spacers, which includes trimming top portions of the gate spacers to form a funnel-like opening in the gate trench, and forming a metal gate structure in the gate trench. A semiconductor structure includes a fin protruding from a substrate, a metal gate structure disposed over the fin, gate spacers disposed on sidewalls of the metal gate structure, where a top surface of each gate spacer is angled toward the semiconductor fin, a dielectric layer disposed over the top surface of each gate spacer, and a conductive feature disposed between the gate spacers to contact the metal gate structure, where sidewalls of the conductive feature contact the dielectric layer.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: April 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ru-Shang Hsiao, Ching-Hwanq Su, Pin Chia Su, Ying Hsin Lu, I-Shan Huang
  • Publication number: 20240105517
    Abstract: Semiconductor device and the manufacturing method thereof are disclosed. An exemplary semiconductor device comprises first semiconductor stack over a substrate, wherein the first semiconductor stack includes first semiconductor layers separated from each other and stacked up along a direction substantially perpendicular to a top surface of the substrate; second semiconductor stack over the substrate, wherein the second semiconductor stack includes second semiconductor layers separated from each other and stacked up along the direction substantially perpendicular to the top surface of the substrate; inner spacers between edge portions of the first semiconductor layers and between edge portions of the second semiconductor layers; and a bulk source/drain (S/D) feature between the first semiconductor stack and the second semiconductor stack, wherein the bulk S/D feature is separated from the substrate by a first air gap, and the bulk S/D feature is separated from the inner spacers by second air gaps.
    Type: Application
    Filed: November 30, 2023
    Publication date: March 28, 2024
    Inventors: Xusheng Wu, Ying-Keung Leung, Huiling Shang
  • Publication number: 20240096971
    Abstract: A method including providing a device including a gate structure and a source/drain feature adjacent to the gate structure. An insulating layer (e.g., CESL, ILD) is formed over the source/drain feature. A trench is etched in the insulating layer to expose a surface of the source/drain feature. A semiconductor material is then formed in the etched trench on the surface of the source/drain feature. The semiconductor material is converted to a silicide.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 21, 2024
    Inventors: Xusheng WU, Chang-Miao LIU, Ying-Keung LEUNG, Huiling SHANG, Youbo LIN
  • Publication number: 20230304832
    Abstract: The present application provides a continuous spatial synchronization monitoring device for an ocean temperature and pressure. Broadband light output by a broadband light source is converted into broadband pulsed light by using a pulse controller; then, the broadband pulsed light is demodulated by using a phase shifted fiber bragg grating unit to obtain pulsed light having multiple different wave-lengths; the pulsed light is incident to a sensing optical fiber in seawater by means of a wavelength division multiplexer; according to a Rayleigh scattering principle, backward Rayleigh scattering light returns to a control demodulation module by means of the wavelength division multiplexer; the control demodulation module performs demodulation on the backward Rayleigh scattering light, analyzes a dynamic pressure according to a phase change of a light signal, and analyzes a seawater temperature according to a wavelength change, thereby simultaneously monitoring both the pressure and temperature.
    Type: Application
    Filed: July 6, 2020
    Publication date: September 28, 2023
    Applicant: SHANDONG ACADEMY OF SCIENCES
    Inventors: Yinglong WANG, Chang WANG, Jiasheng NI, Ying SHANG, Chen WANG, Xiaohui LIU, Zhiqiang SONG, Yingying WANG
  • Publication number: 20230288272
    Abstract: The present application provides a multi-wavelength laser for synchronously monitoring the temperature and pressure of an ocean. A pulse controller is used to convert a broadband laser outputted by a broadband laser source into a broadband pulsed light, and then a phase shifted fiber bragg grating unit is used to demodulate a plurality of pulsed light with different wavelengths from the broadband pulsed light. The pulsed light outputted by the laser is emitted into a sensing fiber in seawater by means of a wavelength division multiplexer, scattered light is returned to a control demodulation module by means of the wavelength division multiplexer, the control demodulation module demodulates the scattered light, so that the dynamic pressure is parsed according to a phase change of a light signal, and the seawater temperature is parsed according to a wavelength change of the light signal.
    Type: Application
    Filed: July 6, 2020
    Publication date: September 14, 2023
    Applicant: LASER INSTITUTE OF SHANDONG ACADEMY OF SCIENCE
    Inventors: Ying SHANG, Jiasheng NI, Chen WANG, Qian GUO, Zhiqiang SONG, Wenan ZHAO, Sheng HUANG, Chang LI, Bing CAO, Lei LV
  • Patent number: 11705373
    Abstract: A system and method for performing in-situ measurements of semiconductor devices during chemical vapor deposition (CVD) includes disposing a chip carrier within a sealed chamber of a reactor for carrying out in-situ monitoring of partially fabricated semiconductor devices. The chip carrier includes a plurality of metallized bonding pads disposed along both peripheral edges on a same surface of the base for making electrical connections to metallized pads or contacts on the semiconductor device through bonding wires. Each of the plurality of metallized bonding pads disposed along both peripheral edges is electrically connected to each other as a pair through electrically connecting to a corresponding pair of ports which are disposed along both peripheral edges of the chip carrier. In-situ monitoring of the partially fabricated semiconductor device is performed through connecting the plurality of ports on the chip carrier to an external source-measure unit through a connector and wire harness.
    Type: Grant
    Filed: March 10, 2021
    Date of Patent: July 18, 2023
    Assignee: NORTHWESTERN UNIVERSITY
    Inventors: Michael J. Moody, Lincoln J. Lauhon, Ju Ying Shang
  • Patent number: 11480450
    Abstract: An EHz ultrafast modulated pulse scanning laser and a distributed fiber sensing system. A plurality of phase-shift gratings are engraved on a doped fiber, the phase-shift gratings having different central window wavelengths and a wavelength interval between the adjacent central window wavelengths being a preset fixed value. When a pump light emitted by a pump laser source is coupled by a wavelength division multiplexer and enters the doped fiber, a single-mode narrow-linewidth laser light having multiple wavelengths with a wavelength interval being a preset fixed value can be generated, by using the phase-shift gratings graved on the doped fiber. The ultrafast modulation is completed by using a time-domain control method based on an EOM. An internally frequency converted pulse light formed by splicing pulse lights whose frequencies linearly increase is obtained, thus forming the EHz ultrafast modulation of a distributed feedback fiber laser.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: October 25, 2022
    Assignee: LASER INSTITUTE OF SHANDONG ACADEMY OF SCIENCE
    Inventors: Ying Shang, Chen Wang, Chang Wang, Jiasheng Ni, Wenan Zhao, Chang Li, Bing Cao, Sheng Huang, Yingying Wang, Yanbin Wu
  • Patent number: 11248952
    Abstract: The present application discloses a fiber distributed acoustic sensing system, including a forward pump source, a wavelength division multiplexer, an active phase-shifted grating array, a backward pump source, and a data demodulation and processing device. The active phase-shifted grating array includes several active phase-shifted gratings engraved on a same fiber, each active phase-shifted grating having a same excitation light wavelength. The active phase-shifted grating array is configured to receive a forward pump pulse and a backward pump light pulse incident from the backward pump source, so that a forward excitation light and a backward excitation light are generated in each active phase-shifted grating, and two adjacent active phase-shifted gratings are enabled to generate excitation light self interference within a same pulse duration.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: February 15, 2022
    Assignee: Laser Institute of Shandong Academy of Science
    Inventors: Chen Wang, Ying Shang, Wenan Zhao, Chang Li, Bing Cao, Sheng Huang, Jiasheng Ni, Chang Wang
  • Patent number: 11231299
    Abstract: A high-performance distributed fiber sensing system based on EHz ultrafast pulse scanning. During testing of a disturbance signal, an internally frequency converted pulse light emitted by an EHz ultrafast pulse scanning laser enters a sensing fiber after passing through a circulator, and a backward Rayleigh scattering signal transmitted by the sensing fiber enters an unbalanced Michelson interferometer after passing through a coupler. By designing an arm length difference between two interference arms, interferences sequentially occur for the backward Rayleigh scattering light at a position where lengths of two adjacent arms differ. A signal received after passing through the unbalanced Michelson interferometer includes a phase difference signal caused by an external disturbance signal in the sensing fiber.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: January 25, 2022
    Assignee: LASER INSTITUTE OF SHANDONG ACADEMY OF SCIENCE
    Inventors: Ying Shang, Chen Wang, Chang Wang, Jiasheng Ni, Wenan Zhao, Chang Li, Bing Cao, Sheng Huang, Yingying Wang, Yanbin Wu
  • Publication number: 20210287949
    Abstract: A system and method for performing in-situ measurements of semiconductor devices during chemical vapor deposition (CVD) includes disposing a chip carrier within a sealed chamber of a reactor for carrying out in-situ monitoring of partially fabricated semiconductor devices. The chip carrier includes a plurality of metallized bonding pads disposed along both peripheral edges on a same surface of the base for making electrical connections to metallized pads or contacts on the semiconductor device through bonding wires. Each of the plurality of metallized bonding pads disposed along both peripheral edges is electrically connected to each other as a pair through electrically connecting to a corresponding pair of ports which are disposed along both peripheral edges of the chip carrier. In-situ monitoring of the partially fabricated semiconductor device is performed through connecting the plurality of ports on the chip carrier to an external source-measure unit through a connector and wire harness.
    Type: Application
    Filed: March 10, 2021
    Publication date: September 16, 2021
    Inventors: Michael J. Moody, Lincoln J. Lauhon, Ju Ying Shang
  • Patent number: 11054302
    Abstract: The present invention provides an event positioning method, device and application in a distributed fiber vibration monitoring system. When a location at which an event occurs in a sensing fiber is to be positioned, an interference field signal having a maximum optical power is obtained by comparing optical powers of respective interference field signals corresponding to backward Rayleigh scattering lights that are generated when a pulse light is transmitted in the sensing fiber. Subsequently, a sensing location of the interference field signal having the maximum optical power is calculated. Finally, the location at which the event occurs in the sensing fiber is determined, according to the sensing location and a location distribution pattern of the event. According to the positioning method provided in the present invention, by screening the interference field signals and then calculating the event location, the spatial resolution is not determined merely by the pulse width of the optical signal.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: July 6, 2021
    Assignee: Laser Institute of Shandong Academy of Science
    Inventors: Ying Shang, Chen Wang, Chang Wang, Jiasheng Ni, Chang Li, Wenan Zhao, Bing Cao, Sheng Huang, Xiaohui Liu, Yingying Wang
  • Publication number: 20210048337
    Abstract: The present application discloses a fiber distributed acoustic sensing system, including a forward pump source, a wavelength division multiplexer, an active phase-shifted grating array, a backward pump source, and a data demodulation and processing device. The active phase-shifted grating array includes several active phase-shifted gratings engraved on a same fiber, each active phase-shifted grating having a same excitation light wavelength. The active phase-shifted grating array is configured to receive a forward pump pulse and a backward pump light pulse incident from the backward pump source, so that a forward excitation light and a backward excitation light are generated in each active phase-shifted grating, and two adjacent active phase-shifted gratings are enabled to generate excitation light self interference within a same pulse duration.
    Type: Application
    Filed: September 11, 2019
    Publication date: February 18, 2021
    Inventors: Chen Wang, Ying Shang, Wenan Zhao, Chang Li, Bing Cao, Sheng Huang, Jiasheng Ni, Chang Wang
  • Publication number: 20210010835
    Abstract: A high-performance distributed fiber sensing system based on EHz ultrafast pulse scanning. During testing of a disturbance signal, an internally frequency converted pulse light emitted by an EHz ultrafast pulse scanning laser enters a sensing fiber after passing through a circulator, and a backward Rayleigh scattering signal transmitted by the sensing fiber enters an unbalanced Michelson interferometer after passing through a coupler. By designing an arm length difference between two interference arms, interferences sequentially occur for the backward Rayleigh scattering light at a position where lengths of two adjacent arms differ. A signal received after passing through the unbalanced Michelson interferometer includes a phase difference signal caused by an external disturbance signal in the sensing fiber.
    Type: Application
    Filed: July 31, 2019
    Publication date: January 14, 2021
    Inventors: Ying SHANG, Chen Wang, Chang Wang, Jiasheng Ni, Wenan Zhao, Chang Li, Bing Cao, Sheng Huang, Yingying Wang, Yanbin Wu
  • Publication number: 20210010834
    Abstract: An EHz ultrafast modulated pulse scanning laser and a distributed fiber sensing system. A plurality of phase-shift gratings are engraved on a doped fiber, the phase-shift gratings having different central window wavelengths and a wavelength interval between the adjacent central window wavelengths being a preset fixed value. When a pump light emitted by a pump laser source is coupled by a wavelength division multiplexer and enters the doped fiber, a single-mode narrow-linewidth laser light having multiple wavelengths with a wavelength interval being a preset fixed value can be generated, by using the phase-shift gratings graved on the doped fiber. The ultrafast modulation is completed by using a time-domain control method based on an EOM. An internally frequency converted pulse light formed by splicing pulse lights whose frequencies linearly increase is obtained, thus forming the EHz ultrafast modulation of a distributed feedback fiber laser.
    Type: Application
    Filed: August 7, 2019
    Publication date: January 14, 2021
    Inventors: Ying SHANG, Chen WANG, Chang WANG, Jiasheng NI, Wenan ZHAO, Chang LI, Bing CAO, Sheng HUANG, Yingying WANG, Yanbin WU
  • Publication number: 20200355547
    Abstract: The present invention provides an event positioning method, device and application in a distributed fiber vibration monitoring system. When a location at which an event occurs in a sensing fiber is to be positioned, an interference field signal having a maximum optical power is obtained by comparing optical powers of respective interference field signals corresponding to backward Rayleigh scattering lights that are generated when a pulse light is transmitted in the sensing fiber. Subsequently, a sensing location of the interference field signal having the maximum optical power is calculated. Finally, the location at which the event occurs in the sensing fiber is determined, according to the sensing location and a location distribution pattern of the event. According to the positioning method provided in the present invention, by means of screening the interference field signals and then calculating the event location, the spatial resolution is not determined merely by the pulse width of the optical signal.
    Type: Application
    Filed: June 17, 2019
    Publication date: November 12, 2020
    Applicant: Laser Institute of Shandong Academy of Science
    Inventors: Ying SHANG, Chen WANG, Chang WANG, Jiasheng NI, Chang LI, Wenan ZHAO, Bing CAO, Sheng HUANG, Xiaohui LIU, Yingying WANG
  • Patent number: 10697853
    Abstract: An optical fiber distributed monitoring system and method is provided. The system includes a laser device, an acousto-optic modulator, a phase matching interferometer, a photoelectric detector and a phase demodulation module. After entering the phase matching interferometer, the Rayleigh backscattering light containing parameter information output from the sensing optical fiber enters the two arms of the phase matching interferometer respectively, and the light of the two arms of the phase matching interferometer is phase-modulated by the first modulation wave and the second modulation wave, respectively and then interfere with each other to generate interference light. The photoelectric detector converts a light signal into an electric signal, and the phase demodulation module processes the electric signal based on the Hilbert algorithm to obtain the parameter change of the environment under test.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: June 30, 2020
    Assignee: Laser Institute of Shandong Academy of Sciences
    Inventors: Ying Shang, Chen Wang, Chang Wang, Jiasheng Ni, Chang Li, Bing Cao, Wen'an Zhao, Sheng Huang, Yang Liu, Xiaohui Liu, Yingying Wang
  • Publication number: 20200056959
    Abstract: An optical fiber distributed monitoring system and method is provided. The system includes a laser device, an acousto-optic modulator, a phase matching interferometer, a photoelectric detector and a phase demodulation module. After entering the phase matching interferometer, the Rayleigh backscattering light containing parameter information output from the sensing optical fiber enters the two arms of the phase matching interferometer respectively, and the light of the two arms of the phase matching interferometer is phase-modulated by the first modulation wave and the second modulation wave, respectively and then interfere with each other to generate interference light. The photoelectric detector converts a light signal into an electric signal, and the phase demodulation module processes the electric signal based on the Hilbert algorithm to obtain the parameter change of the environment under test.
    Type: Application
    Filed: November 13, 2018
    Publication date: February 20, 2020
    Inventors: Ying Shang, Chen Wang, Chang Wang, Jiasheng Ni, Chang Li, Bing Cao, Wen'an Zhao, Sheng Huang, Yang Liu, Xiaohui Liu, Yingying Wang
  • Patent number: 10145726
    Abstract: Provided is a fiber optic acoustic wave detection system, pertaining to the fiber optic sensing technical field. The system comprises a power output apparatus, a backward Rayleigh scattering principle-based first distributed sensing apparatus, a backward weak optical fiber grating reflection principle-based second distributed sensing apparatus, and a third distributed sensing apparatus. The first distributed sensing apparatus and the second distributed sensing apparatus are connected with the power output apparatus, respectively. The first distributed sensing apparatus and the second distributed sensing apparatus are connected with the third distributed sensing apparatus, respectively.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: December 4, 2018
    Assignee: Laser Institute of Shandong Academy of Science
    Inventors: Chen Wang, Ying Shang, Xiaohui Liu, Wen'an Zhao, Long Ma, Chang Li, Bing Cao, Jiasheng Ni, Chang Wang
  • Publication number: 20180143067
    Abstract: Provided is a fiber optic acoustic wave detection system, pertaining to the fiber optic sensing technical field. The system comprises a power output apparatus, a backward Rayleigh scattering principle-based first distributed sensing apparatus, a backward weak optical fiber grating reflection principle-based second distributed sensing apparatus, and a third distributed sensing apparatus. The first distributed sensing apparatus and the second distributed sensing apparatus are connected with the power output apparatus, respectively. The first distributed sensing apparatus and the second distributed sensing apparatus are connected with the third distributed sensing apparatus, respectively.
    Type: Application
    Filed: February 9, 2017
    Publication date: May 24, 2018
    Inventors: Chen WANG, Ying SHANG, Xiaohui LIU, Wen'an ZHAO, Long MA, Chang LI, Bing CAO, Jiasheng NI, Chang WANG