Patents by Inventor Ying-Syi Li

Ying-Syi Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190172601
    Abstract: Highly uniform and thin silver nanowires are described having average diameters below 20 nm and a small standard deviation of the diameters. The silver nanowires have a high aspect ratio. The silver nanowires can be characterized by a small number of nanowires having a diameter greater than 18 nm as well as with a blue shifted narrow absorption spectrum in a dilute solution. Methods are described to allow for the synthesis of the narrow uniform silver nanowires. Transparent conductive films formed from the thin, uniform silver nanowires can have very low levels of haze and low values of ?L*, the diffusive luminosity, such that the transparent conductive films can provide little alteration of the appearance of a black background.
    Type: Application
    Filed: January 16, 2019
    Publication date: June 6, 2019
    Inventors: Yongxing Hu, Ying-Syi Li, Xiqiang Yang, Jing Shun Ang, Ajay Virkar
  • Publication number: 20190172600
    Abstract: Highly uniform and thin silver nanowires are described having average diameters below 20 nm and a small standard deviation of the diameters. The silver nanowires have a high aspect ratio. The silver nanowires can be characterized by a small number of nanowires having a diameter greater than 18 nm as well as with a blue shifted narrow absorption spectrum in a dilute solution. Methods are described to allow for the synthesis of the narrow uniform silver nanowires. Transparent conductive films formed from the thin, uniform silver nanowires can have very low levels of haze and low values of ?L*, the diffusive luminosity, such that the transparent conductive films can provide little alteration of the appearance of a black background.
    Type: Application
    Filed: April 12, 2018
    Publication date: June 6, 2019
    Inventors: Yongxing Hu, Ying-Syi Li, Xiqiang Yang, Jing Shun Ang, Ajay Virkar
  • Publication number: 20190172602
    Abstract: Highly uniform and thin silver nanowires are described having average diameters below 20 nm and a small standard deviation of the diameters. The silver nanowires have a high aspect ratio. The silver nanowires can be characterized by a small number of nanowires having a diameter greater than 18 nm as well as with a blue shifted narrow absorption spectrum in a dilute solution. Methods are described to allow for the synthesis of the narrow uniform silver nanowires. Transparent conductive films formed from the thin, uniform silver nanowires can have very low levels of haze and low values of ?L*, the diffusive luminosity, such that the transparent conductive films can provide little alteration of the appearance of a black background.
    Type: Application
    Filed: January 16, 2019
    Publication date: June 6, 2019
    Inventors: Yongxing Hu, Ying-Syi Li, Xiqiang Yang, Jing Shun Ang, Ajay Virkar
  • Publication number: 20190066863
    Abstract: Desirable methods for larger scale silver nanoplate synthesis are described along with methods for applying a noble metal coating onto the silver nanoplates to form coated silver nanoplates with a desirable absorption spectrum. The silver nanoplates are suitable for use in coatings for altering the hue of a transparent film. The hue adjustment can be particularly desirable for transparent conductive films.
    Type: Application
    Filed: October 30, 2018
    Publication date: February 28, 2019
    Inventors: Yongxing Hu, Alexander Seung-il Hong, Ying-Syi Li, Xiqiang Yang, Yadong Cao, Ajay Virkar
  • Publication number: 20190010347
    Abstract: Fusing nanowire inks are described that can also comprise a hydrophilic polymer binder, such as a cellulose based binder. The fusing nanowire inks can be deposited onto a substrate surface and dried to drive the fusing process. Transparent conductive films can be formed with desirable properties.
    Type: Application
    Filed: September 11, 2018
    Publication date: January 10, 2019
    Inventors: Ying-Syi Li, Xiqiang Yang, Yu Kambe, Xiaofeng Chen, Hua Gu, Steven Michael LAm, Melanie Maniko Inouye, Arthur Yung-Chi Cheng, Alex Da Zhang Tan, Christopher Steven Scully, Ajay Virkar
  • Patent number: 10147512
    Abstract: Desirable methods for larger scale silver nanoplate synthesis are described along with methods for applying a noble metal coating onto the silver nanoplates to form coated silver nanoplates with a desirable absorption spectrum. The silver nanoplates are suitable for use in coatings for altering the hue of a transparent film. The hue adjustment can be particularly desirable for transparent conductive films.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: December 4, 2018
    Assignee: C3Nano Inc.
    Inventors: Yongxing Hu, Alexander Seung-il Hong, Ying-Syi Li, Xiqiang Yang, Yadong Cao, Ajay Virkar
  • Publication number: 20180297840
    Abstract: A method of forming a transparent electrically conductive film including depositing a dispersion of metal nanowires onto a substrate surface, delivering a solution including a fusing agent in a solvent onto the substrate surface, and drying the substrate surface after depositing the metal nanowires and delivering the fusing agent solution to fuse at least some of the metal nanowires into the transparent electrically conductive film comprising a fused metal nanowire network.
    Type: Application
    Filed: June 26, 2018
    Publication date: October 18, 2018
    Inventors: Ajay Virkar, Ying-Syi Li, Melburne C. LeMieux
  • Patent number: 10100213
    Abstract: Fusing nanowire inks are described that can also comprise a hydrophilic polymer binder, such as a cellulose based binder. The fusing nanowire inks can be deposited onto a substrate surface and dried to drive the fusing process. Transparent conductive films can be formed with desirable properties.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: October 16, 2018
    Assignee: C3Nano Inc.
    Inventors: Ying-Syi Li, Xiqiang Yang, Yu Kambe, Xiaofeng Chen, Hua Gu, Steven Michael Lam, Melanie Mariko Inouye, Authur Yung-Chi Cheng, Alex Da Zhang Tan, Christopher Steven Scully, Ajay Virkar
  • Publication number: 20180287608
    Abstract: Reduction/oxidation reagents have been found to be effective to chemically cure a sparse metal nanowire film into a fused metal nanostructured network through evidently a ripening type process. The resulting fused network can provide desirable low sheet resistances while maintaining good optical transparency. The transparent conductive films can be effectively applied as a single conductive ink or through sequential forming of a metal nanowire film with the subsequent addition of a fusing agent. The fused metal nanowire films can be effectively patterned, and the patterned films can be useful in devices, such as touch sensors.
    Type: Application
    Filed: June 6, 2018
    Publication date: October 4, 2018
    Inventors: Ajay Virkar, Xiqiang Yang, Ying-Syi Li, Dennis McKean, Melburne C. LeMieux
  • Patent number: 10029916
    Abstract: Metal nanowires, such as silver nanowires coated on a substrate were fused together to form fused metal nanowire networks that have greatly improved conductivity while maintaining good transparency. Materials formed form the fused metal nanowire networks described herein can have a transparency to visible light of at least about 85% and a sheet resistance of no more than about 100 Ohms/square or a transparency to visible light of at least about 90% and a sheet resistance of no more than about 250 Ohms/square. The method of forming such a fused metal nanowire networks are disclosed that involves exposure of metal nanowires to various fusing agents on a short timescale. When formed into a film, materials comprising the metal nanowire network demonstrate low sheet resistance while maintaining desirably high levels of optical transparency, making them suitable for transparent electrode formation.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: July 24, 2018
    Assignee: C3Nano Inc.
    Inventors: Ajay Virkar, Ying-Syi Li, Melburne C. LeMieux
  • Patent number: 10020807
    Abstract: Reduction/oxidation reagents have been found to be effective to chemically cure a sparse metal nanowire film into a fused metal nanostructured network through evidently a ripening type process. The resulting fused network can provide desirable low sheet resistances while maintaining good optical transparency. The transparent conductive films can be effectively applied as a single conductive ink or through sequential forming of a metal nanowire film with the subsequent addition of a fusing agent. The fused metal nanowire films can be effectively patterned, and the patterned films can be useful in devices, such as touch sensors.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: July 10, 2018
    Assignee: C3NANO INC.
    Inventors: Ajay Virkar, Xiqiang Yang, Ying-Syi Li, Dennis McKean, Melburne C. LeMieux
  • Publication number: 20180155558
    Abstract: Metal nanowires, such as silver nanowires coated on a substrate were sintered together to form fused metal nanowire networks that have greatly improved conductivity while maintaining good transparency and low haze. The method of forming such a fused metal nanowire networks are disclosed that involves exposure of metal nanowires to various fusing agents on a short timescale. The resulting sintered network can have a core-shell structure in which metal halide forms the shell. Additionally, effective methods are described for forming patterned structure with areas of sintered metal nanowire network with high conductivity and areas of un-sintered metal nanowires with low conductivity. The corresponding patterned films are also described.
    Type: Application
    Filed: February 1, 2018
    Publication date: June 7, 2018
    Inventors: Ajay Virkar, Ying-Syi Li, Xiqiang Yang, Melburne C. LeMieux
  • Publication number: 20180105704
    Abstract: Metal salt based stabilizers are described that are effective to improve stability of sparse metal conductive films formed with metal nanowires, especially silver nanowires. Specifically, vanadium (+5) compositions can be effectively placed in coatings to provide desirable stabilization under accelerated wear testing conditions. Sparse metal conductive films can comprise fused metal nanostructured networks. Cobalt (+2) compounds can be incorporated as stabilization agents within nanowire inks to provide a high degree of stabilization without significantly interfering with the fusing process.
    Type: Application
    Filed: October 11, 2017
    Publication date: April 19, 2018
    Inventors: Xiqiang Yang, Yongxing Hu, Ajay Virkar, Arthur Yung-Chi Cheng, Faraz Azadi Manzour, Ying-Syi Li
  • Patent number: 9920207
    Abstract: Metal nanowires, such as silver nanowires coated on a substrate were sintered together to form fused metal nanowire networks that have greatly improved conductivity while maintaining good transparency and low haze. The method of forming such a fused metal nanowire networks are disclosed that involves exposure of metal nanowires to various fusing agents on a short timescale. The resulting sintered network can have a core-shell structure in which metal halide forms the shell. Additionally, effective methods are described for forming patterned structure with areas of sintered metal nanowire network with high conductivity and areas of un-sintered metal nanowires with low conductivity. The corresponding patterned films are also described.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: March 20, 2018
    Assignee: C3NANO INC.
    Inventors: Ajay Virkar, Ying-Syi Li, Xiqiang Yang, Melburne C. LeMieux
  • Publication number: 20170169911
    Abstract: Desirable methods for larger scale silver nanoplate synthesis are described along with methods for applying a noble metal coating onto the silver nanoplates to form coated silver nanoplates with a desirable absorption spectrum. The silver nanoplates are suitable for use in coatings for altering the hue of a transparent film. The hue adjustment can be particularly desirable for transparent conductive films.
    Type: Application
    Filed: December 9, 2015
    Publication date: June 15, 2017
    Inventors: Yongxing Hu, Alexander Seung-il Hong, Ying-Syi Li, Xiqiang Yang, Yadong Cao, Ajay Virkar
  • Publication number: 20170067166
    Abstract: Metal nanowires with uniform noble metal coatings are described. Two methods, galvanic exchange and direct deposition, are disclosed for the successful formation of the uniform noble metal coatings. Both the galvanic exchange reaction and the direct deposition method benefit from the inclusion of appropriately strong binding ligands to control or mediate the coating process to provide for the formation of a uniform coating. The noble metal coated nanowires are effective for the production of stable transparent conductive films, which may comprise a fused metal nanostructured network.
    Type: Application
    Filed: November 17, 2016
    Publication date: March 9, 2017
    Inventors: Yongxing Hu, Xiqiang Yang, Ying-Syi Li, Alexander Seung-il Hong, Melanie Mariko Inouye, Yadong Cao, Ajay Virkar
  • Patent number: 9530534
    Abstract: Metal nanowires with uniform noble metal coatings are described. Two methods, galvanic exchange and direct deposition, are disclosed for the successful formation of the uniform noble metal coatings. Both the galvanic exchange reaction and the direct deposition method benefit from the inclusion of appropriately strong binding ligands to control or mediate the coating process to provide for the formation of a uniform coating. The noble metal coated nanowires are effective for the production of stable transparent conductive films, which may comprise a fused metal nanostructured network.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: December 27, 2016
    Assignee: C3Nano Inc.
    Inventors: Yongxing Hu, Xiqiang Yang, Ying-Syi Li, Alexander Seung-Il Hong, Melanie Mariko Inouye, Yadong Cao, Ajay Virkar
  • Publication number: 20160369118
    Abstract: Fusing nanowire inks are described that can also comprise a hydrophilic polymer binder, such as a cellulose based binder. The fusing nanowire inks can be deposited onto a substrate surface and dried to drive the fusing process. Transparent conductive films can be formed with desirable properties.
    Type: Application
    Filed: August 25, 2016
    Publication date: December 22, 2016
    Inventors: Ying-Syi Li, Xiqiang Yang, Yu Kambe, Xiaofeng Chen, Hua Gu, Steven Michael Lam, Melanie Mariko Inouye, Authur Yung-Chi Cheng, Alex Da Zhang Tan, Christopher Steven Scully, Ajay Virkar
  • Publication number: 20160293288
    Abstract: Metal nanowires with uniform noble metal coatings are described. Two methods, galvanic exchange and direct deposition, are disclosed for the successful formation of the uniform noble metal coatings. Both the galvanic exchange reaction and the direct deposition method benefit from the inclusion of appropriately strong binding ligands to control or mediate the coating process to provide for the formation of a uniform coating. The noble metal coated nanowires are effective for the production of stable transparent conductive films, which may comprise a fused metal nanostructured network.
    Type: Application
    Filed: August 11, 2015
    Publication date: October 6, 2016
    Inventors: Yongxing Hu, Xiqiang Yang, Ying-Syi Li, Alexander Seung-il Hong, Melanie Mariko Inouye, Yadong Cao, Ajay Virkar
  • Patent number: 9447301
    Abstract: Fusing nanowire inks are described that can also comprise a hydrophilic polymer binder, such as a cellulose based binder. The fusing nanowire inks can be deposited onto a substrate surface and dried to drive the fusing process. Transparent conductive films can be formed with desirable properties.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: September 20, 2016
    Assignee: C3Nano Inc.
    Inventors: Ying-Syi Li, Xiqiang Yang, Yu Kambe, Xiaofeng Chen, Hua Gu, Steven Michael Lam, Melanie Mariko Inouye, Arthur Yung-Chi Cheng, Alex Da Zhang Tan, Christopher S. Scully, Ajay Virkar