Patents by Inventor Ying-Chieh Lin

Ying-Chieh Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11934027
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: March 19, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu
  • Patent number: 10821413
    Abstract: A microparticle forming device is used to form microparticles with uniform particle size and proper roundness, and includes a collection pipe, a fluid nozzle, a reactor and a filter. The collection pipe includes a fluid passage, an aqueous-phase fluid inlet, an oil-phase fluid inlet and a mixed fluid outlet, all of which communicate with the fluid passage. The oil-phase fluid inlet is located between the aqueous-phase fluid inlet and the mixed fluid outlet. The fluid nozzle has a plurality of oil-phase fluid drop outlets aligned with the oil-phase fluid inlet of the collection pipe. The reactor has a reaction chamber communicating with the mixed fluid outlet of the collection pipe, a mixing member accommodated in the reaction chamber, and a microparticle collection port communicating communicated with the reaction chamber. Two opposite ends of the filter respectively communicate with the reaction chamber of the reactor.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: November 3, 2020
    Assignee: METAL INDUSTRIES RESEARCH & DEVELOPMENT CENTRE
    Inventors: Cheng-Han Hung, Zong-Hsin Liu, Ming-Fang Tsai, Ying-Chieh Lin, Chiu-Feng Lin, Ying-Cheng Lu, Yao-Kun Huang
  • Publication number: 20200144907
    Abstract: An electronically commuted (EC) motor includes an electromagnetic interference (EMI) filter circuit, a bridge circuit, an alternating current (AC) voltage to square wave circuit, a microcontroller, a motor coil, and a power circuit. The EMI filter circuit is for filtering out electromagnetic interference of an alternating current (AC) voltage received from a live line and a neutral line to generate a filtered AC voltage. The bridge circuit is for converting the filtered AC voltage to a first direct current (DC) voltage. The waveform converter circuit is for generating a pair of signals according to a voltage on the neutral line and a signal on the signal line. The microcontroller is for generating a control signal according to the pair of signals. The power circuit is for providing power to the motor coil according to the first DC voltage and the control signal.
    Type: Application
    Filed: October 16, 2019
    Publication date: May 7, 2020
    Inventors: Chorng-Wei Liaw, Hsien-Wen Hsu, Ying-Chieh Lin
  • Patent number: 10335754
    Abstract: A nozzle for producing microparticles includes a nozzle body having an oscillating device and an amplifying portion connected to the oscillating device and located between first and second ends of the nozzle body. A through-hole extends from the first end through the amplifying portion and the second end. A tube assembly is mounted in the through-hole and includes first and second tubes between which a first fluid passageway is defined. A second fluid passageway is defined in the second tube. Two ends of the first tube respectively form a first filling port and a plurality of first outlet ports both of which intercommunicate with the first fluid passageway. Two ends of the second tube respectively form a second filling port and a second outlet port both of which intercommunicate with the second fluid passageway. A formation space is defined between the second outlet port and the first outlet ports.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: July 2, 2019
    Assignee: Metal Industries Research & Development Centre
    Inventors: Zong-Hsin Liu, Cheng-Han Hung, Ying-Chieh Lin, Cheng-Tang Pan, Yao-Kun Huang, Ying-Cheng Lu
  • Publication number: 20190193043
    Abstract: A microparticle forming device is used to form microparticles with uniform particle size and proper roundness, and includes a collection pipe, a fluid nozzle, a reactor and a filter. The collection pipe includes a fluid passage, an aqueous-phase fluid inlet, an oil-phase fluid inlet and a mixed fluid outlet, all of which are communicated with the fluid passage. The oil-phase fluid inlet is located between the aqueous-phase fluid inlet and the mixed fluid outlet. The fluid nozzle has a plurality of oil-phase fluid drop outlets aligned with the oil-phase fluid inlet of the collection pipe. The reactor has a reaction chamber communicated with the mixed fluid outlet of the collection pipe, a mixing member accommodated in the reaction chamber, and a microparticle collection port communicated with the reaction chamber. Two opposite ends of the filter are respectively communicated with the reaction chamber of the reactor.
    Type: Application
    Filed: December 22, 2017
    Publication date: June 27, 2019
    Inventors: Cheng-Han Hung, Zong-Hsin Liu, Ming-Fang Tsai, Ying-Chieh Lin, Chiu-Feng Lin, Ying-Cheng Lu, Yao-Kun Huang
  • Publication number: 20190134591
    Abstract: A microcarrier forming apparatus includes a tank having an inner periphery. A plurality of spoilers is disposed on the inner periphery of the tank. A spray generator includes a spraying end facing an interior of the tank. A stirrer includes a shaft and a fluid driving member. The shaft includes a central axis inclined from a horizontal plane. The fluid driving member is coupled to the shaft and is disposed in the interior of the tank.
    Type: Application
    Filed: December 26, 2017
    Publication date: May 9, 2019
    Inventors: Zong-Hsin Liu, Cheng-Han Hung, Ying-Chieh Lin, Cheng-Tang Pan, Shiao-Wei Kuo, Yao-Kun Huang
  • Publication number: 20190125677
    Abstract: A water-phase composition for producing microparticles includes a water-phase fluid, an amphiphilic polymer stabilizing agent, a water-phase surfactant, and an organic solvent. The amphiphilic polymer stabilizing agent can be polyvinyl alcohol. The water-phase surfactant can be polysorbate 20, polysorbate 80, poloxamer 188, or sodium dodecyl sulfate. The water-phase surfactant can be ethyl acetate, dichloromethane, chloroform, or dimethyl sulfoxide.
    Type: Application
    Filed: December 27, 2017
    Publication date: May 2, 2019
    Inventors: Zong-Hsin Liu, Cheng-Han Hung, Ying-Chieh Lin, Cheng-Tang Pan, Shiao-Wei Kuo, Yao-Kun Huang
  • Patent number: 10272404
    Abstract: A nozzle for producing microparticles includes a nozzle body having a first end and a second end opposite to the first end. The nozzle body further includes a through-hole extending from the first end through the second end. A fluid passageway is defined in the through-hole and forms a filling port in the first end of the nozzle body and a plurality of outlet ports in the second end of the nozzle body. The nozzle body further includes an oscillating device and an amplifying portion. The oscillating device is connected to the amplifying portion. The amplifying portion surrounds the fluid passageway and is located adjacent to the second end of the nozzle body.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: April 30, 2019
    Assignee: Metal Industries Research & Development Centre
    Inventors: Zong-Hsin Liu, Cheng-Han Hung, Ying-Chieh Lin, Cheng-Tang Pan, Yao-Kun Huang, Ying-Cheng Lu
  • Patent number: 10137090
    Abstract: A nozzle, an apparatus, and a method for producing dual-layer microparticles used as microcarriers. The nozzle includes a nozzle body having a first fluid passageway and a cover mounted to the nozzle body and having a second fluid passageway. A plurality of extension tubes is communicated with an end of the first fluid passageway and is spaced from each other. Each extension tube includes an outlet port distant to the first fluid passageway. A plurality of sleeves is communicated with the second fluid passageway. Each sleeve includes an opening distant to the second fluid passageway. Each extension tube extends into one of the sleeves. An outer wall of each extension tube is spaced from an inner wall of one of the sleeves. The outlet port of each extension tube is located between the second fluid passageway and the opening of one of the sleeves.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: November 27, 2018
    Assignee: Metal Industries Research & Development Centre
    Inventors: Cheng-Han Hung, Zong-Hsin Liu, Ying-Chieh Lin, Ming-Fang Tsai, Hai-Ching Tsou, Ying-Cheng Lu
  • Patent number: 10117835
    Abstract: A nozzle includes a nozzle body having a fluid passageway to which extension tubes are communicated. Each extension tube includes an end having an outlet port. The outlet ports are spaced from each other. An apparatus includes the nozzle, a fluid tank into which the extension tubes extends, a fluid shear device mounted in the fluid tank, and a temperature control system in which the fluid tank is mounted. A method includes filling a water phase fluid into the fluid tank. An oil phase fluid flows out of the nozzle body via the outlet ports. The water phase fluid is disturbed and flows out of the outlet ports to form semi-products of microparticles in the fluid tank. Each semi-product has an inner layer formed by the oil phase fluid and an outer layer formed by the water phase fluid. The outer layers of the semi-products are removed to form microparticles.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: November 6, 2018
    Assignee: Metal Industries Research & Development Centre
    Inventors: Cheng-Han Hung, Zong-Hsin Liu, Ying-Chieh Lin, Ming-Fang Tsai, Hai-Ching Tsou, Ying-Cheng Lu
  • Patent number: 10029280
    Abstract: A sieve for microparticles includes a seat having a chamber and a plurality of boards mounted in the chamber. Each of the plurality of boards includes a first face and a second face opposite to the first face. The first face includes at least one notch. The second face includes at least one groove. The first face of each of the plurality of boards abuts the second face of an adjacent board. The at least one notch and the at least one groove respectively of two adjacent boards are partially aligned and intercommunicated with each other.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: July 24, 2018
    Assignee: Metal Industries Research & Development Centre
    Inventors: Cheng-Han Hung, Zong-Hsin Liu, Ying-Chieh Lin, Ming-Fang Tsai, Chia-Ming Jan, Yun-Lung Huang, Hai-Ching Tsou, Ying-Cheng Lu
  • Publication number: 20180161278
    Abstract: A nozzle, an apparatus, and a method are provided for mass production of dual-layer microparticles used as microcarriers. The nozzle includes a nozzle body having a first fluid passageway and a cover mounted to the nozzle body and having a second fluid passageway. A plurality of extension tubes is communicated with an end of the first fluid passageway and is spaced from each other. Each extension tube includes an outlet port distant to the first fluid passageway. A plurality of sleeves is communicated with the second fluid passageway. Each sleeve includes an opening distant to the second fluid passageway. Each extension tube extends into one of the sleeves. An outer wall of each extension tube is spaced from an inner wall of one of the sleeves. The outlet port of each extension tube is located between the second fluid passageway and the opening of one of the sleeves.
    Type: Application
    Filed: December 14, 2016
    Publication date: June 14, 2018
    Inventors: Cheng-Han Hung, Zong-Hsin Liu, Ying-Chieh Lin, Ming-Fang Tsai, Hai-Ching Tsou, Ying-Cheng Lu
  • Publication number: 20180161819
    Abstract: A sieve for microparticles includes a seat having a chamber and a plurality of boards mounted in the chamber. Each of the plurality of boards includes a first face and a second face opposite to the first face. The first face includes at least one notch. The second face includes at least one groove. The first face of each of the plurality of boards abuts the second face of an adjacent board. The at least one notch and the at least one groove respectively of two adjacent boards are partially aligned and intercommunicated with each other.
    Type: Application
    Filed: December 14, 2016
    Publication date: June 14, 2018
    Inventors: Cheng-Han Hung, Zong-Hsin Liu, Ying-Chieh Lin, Ming-Fang Tsai, Chia-Ming Jan, Yun-Lung Huang, Hai-Ching Tsou, Ying-Cheng Lu
  • Publication number: 20180111106
    Abstract: A method for producing microparticles includes filling a tank with a first fluid. A nozzle including a plurality of first outlet ports facing the tank is provided. A second fluid forms a plurality of liquid films on the first outlet ports. The liquid films on the first outlet ports absorb a vibrational energy to form a plurality of microdroplets that falls into the first fluid. The first fluid envelops outer layers of the microdroplets to form a plurality of semi-products of microparticles. Each semi-product includes an outer layer formed by the first fluid and an inner layer formed by the second fluid. The semi-products in the tank are collected. The outer layers of the semi-products are removed to form a plurality of microparticle products.
    Type: Application
    Filed: December 15, 2016
    Publication date: April 26, 2018
    Inventors: Zong-Hsin Liu, Cheng-Han Hung, Ying-Chieh Lin, Cheng-Tang Pan, Yao-Kun Huang, Ying-Cheng Lu
  • Publication number: 20180110736
    Abstract: A nozzle includes a nozzle body having a fluid passageway to which extension tubes are communicated. Each extension tube includes an end having an outlet port. The outlet ports are spaced from each other. An apparatus includes the nozzle, a fluid tank into which the extension tubes extends, a fluid shear device mounted in the fluid tank, and a temperature control system in which the fluid tank is mounted. A method includes filling a water phase fluid into the fluid tank. An oil phase fluid flows out of the nozzle body via the outlet ports. The water phase fluid is disturbed and flows out of the outlet ports to form semi-products of microparticles in the fluid tank. Each semi-product has an inner layer formed by the oil phase fluid and an outer layer formed by the water phase fluid. The outer layers of the semi-products are removed to form microparticles.
    Type: Application
    Filed: December 14, 2016
    Publication date: April 26, 2018
    Inventors: Cheng-Han Hung, Zong-Hsin Liu, Ying-Chieh Lin, Ming-Fang Tsai, Hai-Ching Tsou, Ying-Cheng Lu
  • Publication number: 20180111103
    Abstract: A nozzle for producing microparticles includes a nozzle body having an oscillating device and an amplifying portion connected to the oscillating device and located between first and second ends of the nozzle body. A through-hole extends from the first end through the amplifying portion and the second end. A tube assembly is mounted in the through-hole and includes first and second tubes between which a first fluid passageway is defined. A second fluid passageway is defined in the second tube. Two ends of the first tube respectively form a first filling port and a plurality of first outlet ports both of which intercommunicate with the first fluid passageway. Two ends of the second tube respectively form a second filling port and a second outlet port both of which intercommunicate with the second fluid passageway. A formation space is defined between the second outlet port and the first outlet ports.
    Type: Application
    Filed: December 15, 2016
    Publication date: April 26, 2018
    Inventors: Zong-Hsin Liu, Cheng-Han Hung, Ying-Chieh Lin, Cheng-Tang Pan, Yao-Kun Huang, Ying-Cheng Lu
  • Publication number: 20180099256
    Abstract: A nozzle for producing microparticles includes a nozzle body having a first end and a second end opposite to the first end. The nozzle body further includes a through-hole extending from the first end through the second end. A fluid passageway is defined in the through-hole and forms a filling port in the first end of the nozzle body and a plurality of outlet ports in the second end of the nozzle body. The nozzle body further includes an oscillating device and an amplifying portion. The oscillating device is connected to the amplifying portion. The amplifying portion surrounds the fluid passageway and is located adjacent to the second end of the nozzle body.
    Type: Application
    Filed: December 14, 2016
    Publication date: April 12, 2018
    Inventors: Zong-Hsin Liu, Cheng-Han Hung, Ying-Chieh Lin, Cheng-Tang Pan, Yao-Kun Huang, Ying-Cheng Lu
  • Patent number: 9807367
    Abstract: A light field image capturing apparatus includes: a main lens, configured to transmit light of an object environment, and including an optical axis; a beam generation unit, configured to receive the light transmitted by the main lens and generate plurality Bessel-beams, where the beam generation unit includes plurality slits or conical lenses arranged in an array manner and configured to generate the Bessel-beam respectively; a micro-lens unit, configured to receive the Bessel-beam generated by the beam generation unit, and including plurality micro-lens elements corresponding to the beam generation unit, wherein each micro-lens element is configured to determine a focus point generated after the Bessel-beam passes through each micro-lens element, and a focal length of a distance between the focus point and the micro-lens element; and a light sensing unit, including a focal plane, and configured to enable the focus point to be focused on the focal plane.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: October 31, 2017
    Assignee: METAL INDUSTRIES RESEARCH & DEVELOPMENT CENTRE
    Inventors: Chia-Ming Jan, Ying-Chieh Lin
  • Publication number: 20170165787
    Abstract: A microstructure forming apparatus is adapted for processing a workpiece and includes: a light source for emitting light toward the workpiece; a first axicon disposed between the light source and the workpiece; and a second axicon disposed between the first axicon and the workpiece. Light emitted from the light source forms a high-order Bessel beam after passing through the first axicon and the second axicon in sequence for processing and forming a microstructure in the workpiece.
    Type: Application
    Filed: December 29, 2015
    Publication date: June 15, 2017
    Inventors: Chia-Ming JAN, Cheng-Han HUNG, Ying-Chieh LIN
  • Publication number: 20170150120
    Abstract: A light field image capturing apparatus includes: a main lens, configured to transmit light of an object environment, and including an optical axis; a beam generation unit, configured to receive the light transmitted by the main lens and generate plurality Bessel-beams, where the beam generation unit includes plurality slits or conical lenses arranged in an array manner and configured to generate the Bessel-beam respectively; a micro-lens unit, configured to receive the Bessel-beam generated by the beam generation unit, and including plurality micro-lens elements corresponding to the beam generation unit, wherein each micro-lens element is configured to determine a focus point generated after the Bessel-beam passes through each micro-lens element, and a focal length of a distance between the focus point and the micro-lens element; and a light sensing unit, including a focal plane, and configured to enable the focus point to be focused on the focal plane.
    Type: Application
    Filed: December 28, 2015
    Publication date: May 25, 2017
    Inventors: Chia-Ming JAN, Ying-Chieh LIN