Patents by Inventor Yingdong Luo

Yingdong Luo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240142690
    Abstract: An apparatus for waveguides and a method of fabricating a waveguide combiner having at least one grating with trenches gap-filled with variable refractive index materials. At least two trenches of at least one grating includes a first gap-fill material having a first volume and a first refractive index, and a second gap-fill material having a second volume and a second refractive index different than the first refractive index. Control of the deposition of first volume and the deposition of second volume in an inkjet deposition process provide for the formation of the grating with two trenches that have different refractive indices and different gap-fill depths. The first gap-fill material and the second gap-fill material merge to form the gap-filler. Therefore, by controlling the varied refractive indices and different gap-fill depths the waveguide combiner is optimized by efficiency or a color uniformity.
    Type: Application
    Filed: September 22, 2023
    Publication date: May 2, 2024
    Inventors: Yingdong LUO, Jinxin FU, Zhengping YAO, Daihua ZHANG, Ludovic GODET
  • Patent number: 11965103
    Abstract: A formulation, system, and method for additive manufacturing of a polishing pad. The formulation includes monomer, dispersant, and nanoparticles. A method of preparing the formulation includes adding a dispersant that is a polyester derivative to monomer, adding metal-oxide nanoparticles to the monomer, and subjecting the monomer having the nanoparticles and dispersant to sonication to disperse the nanoparticles in the monomer.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: April 23, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Yingdong Luo, Sivapackia Ganapathiappan, Ashwin Murugappan Chockalingam, Daihua Zhang, Uma Sridhar, Daniel Redfield, Rajeev Bajaj, Nag B. Patibandla, Hou T. Ng, Sudhakar Madhusoodhanan
  • Publication number: 20240126012
    Abstract: Embodiments of the present disclosure generally relate to methods for forming a waveguide. Methods may include measuring a waveguide substrate, the waveguide having a substrate thickness distribution; and depositing an index-matched layer onto a surface of the waveguide, the index-matched layer having a first surface disposed on the waveguide substrate and a second surface opposing the first surface, wherein the index-matched layer is disposed only over a portion of the waveguide substrate, and a device slope of a second surface of the index-matched layer is substantially the same as the waveguide slope of the first surface of the waveguide.
    Type: Application
    Filed: October 18, 2023
    Publication date: April 18, 2024
    Inventors: Yingdong LUO, Zhengping YAO, Daihua ZHANG, David Alexander SELL, Jingyi YANG, Xiaopei DENG, Kevin MESSER, Samarth BHARGAVA, Rami HOURANI, Ludovic GODET
  • Patent number: 11942576
    Abstract: A photocurable composition includes a blue photoluminescent material, one or more monomers, and a photoinitiator that initiates polymerization of the one or more monomers in response to absorption of the ultraviolet light. The blue photoluminescent material is selected to absorb ultraviolet light with a maximum wavelength in a range of about 300 nm to about 430 nm and to emit blue light. The blue photoluminescent material also has an emission peak in a range of about 420 nm to about 480 nm. The full width at half maximum of the emission peak is less than 100 nm, and the photoluminescence quantum yield is in a range of 5% to 100%.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: March 26, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Yingdong Luo, Lisong Xu, Sivapackia Ganapathiappan, Hou T. Ng, Byung Sung Kwak, Mingwei Zhu, Nag B. Patibandla
  • Patent number: 11942456
    Abstract: A method of fabricating a multi-color display includes dispensing a photo-curable fluid over a display having an array of light emitting diodes (micro-LEDs) disposed below a cover layer. The cover has an outer surface with a plurality of recesses, and the photo-curable fluid fills the recesses. The photo-curable fluid includes a color conversion agent. A plurality of LEDs in the array are activated to illuminate and cure the photo-curable fluid to form a color conversion layer in the recesses over the activated LEDs. This layer will convert light from these LEDs to light of a first color. An uncured remainder of the photo-curable fluid is removed. Then the process is repeated with a different photo-curable fluid having a different color conversion agent and a different plurality of LEDs. This forms a second color conversion layer in different plurality of recesses to convert light from these LEDs to light of a second color.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: March 26, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Daihua Zhang, Yingdong Luo, Mingwei Zhu, Hou T. Ng, Sivapackia Ganapathiappan, Nag B. Patibandla
  • Patent number: 11911870
    Abstract: Embodiments herein generally relate to polishing pads and methods of forming polishing pads. A polishing pad includes a plurality of polishing elements. Each polishing element comprises an individual surface that forms a portion of a polishing surface of the polishing pad and one or more sidewalls extending downwardly from the individual surface to define a plurality of channels disposed between the polishing elements. Each of the polishing elements has a plurality of pore-features formed therein. Each of the polishing elements is formed of a pre-polymer composition and a sacrificial material composition. In some cases, a sample of the cured pre-polymer composition has a glass transition temperature (Tg) of about 80° C. or greater. A storage modulus (E?) of the cured pre-polymer composition at a temperature of 80° C. (E?80) can be about 200 MPa or greater.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: February 27, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Sivapackia Ganapathiappan, Rajeev Bajaj, Yingdong Luo, Aniruddh Jagdish Khanna, You Wang, Daniel Redfield
  • Patent number: 11908979
    Abstract: A photocurable composition includes quantum dots, quantum dot precursor materials, a chelating agent, one or more monomers, and a photoinitiator. The quantum dots are selected to emit radiation in a first wavelength band in the visible light range in response to absorption of radiation in a second wavelength band in the UV or visible light range. The second wavelength band is different than the first wavelength band. The quantum dot precursor materials include metal atoms or metal ions corresponding to metal components present in the quantum dots. The chelating agent is configured to chelate the quantum dot precursor materials. The photoinitiator initiates polymerization of the one or more monomers in response to absorption of radiation in the second wavelength band.
    Type: Grant
    Filed: September 1, 2022
    Date of Patent: February 20, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Yingdong Luo, Daihua Zhang, Hou T. Ng, Sivapackia Ganapathiappan, Nag B. Patibandla
  • Patent number: 11888096
    Abstract: A photocurable composition includes a nanomaterial selected to emit radiation in a first wavelength band in the visible light range in response to absorption of radiation in a second wavelength band in the UV or visible light range. The second wavelength band is different than the first wavelength band. The photocurable composition further includes one or more (meth)acrylate monomers, a thiol crosslinker, and a photoinitiator that initiates polymerization of the one or more (meth)acrylate monomers in response to absorption of radiation in the second wavelength band. A light-emitting device includes a plurality of light-emitting diodes and the cured photocurable composition in contact with a surface through which radiation in a first wavelength band in the UV or visible light range is emitted from each of the light-emitting diodes.
    Type: Grant
    Filed: July 20, 2021
    Date of Patent: January 30, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Yingdong Luo, Sivapackia Ganapathiappan, Daihua Zhang, Hou T. Ng, Nag B. Patibandla
  • Patent number: 11888093
    Abstract: A multi-color display includes a backplane having backplane circuitry, an array of micro-LEDs electrically integrated with backplane circuitry of the backplane, a first color conversion layer over each of a first plurality of light emitting diodes, a second color conversion layer over each of a second plurality of light emitting diodes, and a plurality of isolation walls separating adjacent micro-LEDs of the array. The micro-LEDs of the array are configured to generate illumination of the same wavelength range, the first color conversion layer converts the illumination to light of a first color, and the second color conversion layer converts the illumination to light of a different second color.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: January 30, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Daihua Zhang, Yingdong Luo, Mingwei Zhu, Hou T. Ng, Sivapackia Ganapathiappan, Nag B. Patibandla
  • Publication number: 20240001398
    Abstract: A method of forming a substrate carrier is provided. The method includes forming a first electrode over a first surface of a substrate, the first electrode arranged in a first pattern including a plurality of segments, wherein portions of the plurality of segments are spaced apart from each other by a plurality of gaps; and dispensing a plurality of droplets of a dielectric material over the substrate and into the plurality of gaps. The plurality of droplets includes a first droplet and a second droplet, the first droplet is dispensed onto a first location over the substrate, the second droplet is dispensed onto a second location over the substrate, a size of the first droplet is at least 10% larger than a size of the second droplet.
    Type: Application
    Filed: June 19, 2023
    Publication date: January 4, 2024
    Inventors: Russell Chin Yee TEO, Yingdong LUO, Ludovic GODET, Daihua ZHANG, Zhengping YAO, James D. STRASSNER
  • Publication number: 20240001700
    Abstract: A method of forming an optical device is provided. The method includes forming a first layer over a plurality of optical structures, the first layer including a first plurality of nanoparticles and a second plurality of nanoparticles. The first plurality of nanoparticles and the second plurality of nanoparticles are formed of a first material, the first plurality of nanoparticles have a first average volume, greater than 95% of the first plurality of nanoparticles have a volume within 10% of the first average volume, the second plurality of nanoparticles have a second average volume, greater than 95% of the second plurality of nanoparticles have a volume within 10% of the second average volume, and the second average volume is at least 25% larger the first average volume.
    Type: Application
    Filed: June 19, 2023
    Publication date: January 4, 2024
    Inventors: Yingdong LUO, Xiaopei DENG, Rami HOURANI, Ludovic GODET
  • Patent number: 11851570
    Abstract: Polishing articles and methods of manufacturing polishing articles used in polishing processes and cleaning processes are provided. More particularly, implementations disclosed herein relate to composite polishing articles having tunable properties such as hydrophilicity and zeta potential. 3D printed chemical-mechanical planarization (CMP) pads composed of UV curable acrylic chemistry are generally hydrophobic in nature. Such hydrophobic behavior affects the wetting properties with abrasive-based polishing slurries such as ceria-base slurries. However, in order to increase the planarization and removal rate while decreasing defects, hydrophilic pads are preferred. In addition, it is desirable that the zeta potential (Zp) of the pads be tunable over a wide range of conditions at different pH values. Implementations of the present disclosure include methods for increasing the hydrophilicity and tuning the Zp of the pads with anionic additives and pads produced using these methods.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: December 26, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Uma Sridhar, Sivapackia Ganapathiappan, Ashwin Chockalingam, Yingdong Luo, Daniel Redfield, Rajeev Bajaj, Nag B. Patibandla, Hou T. Ng, Sudhakar Madhusoodhanan
  • Patent number: 11855241
    Abstract: A light-emitting device includes a plurality of light-emitting diodes, a first cured composition over a first subset of the light-emitting diodes, and a second cured composition over a second subset of light-emitting diodes. The first cured composition includes a first photopolymer and a blue photoluminescent material that is an organic, organometallic, or polymeric material, embedded in the first photopolymer. The second cured composition includes a second photopolymer and a nanomaterial embedded in the second photopolymer. The nanomaterial is selected to emit red or green light in response.
    Type: Grant
    Filed: July 21, 2022
    Date of Patent: December 26, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Yingdong Luo, Lisong Xu, Sivapackia Ganapathiappan, Hou T. Ng, Byung Sung Kwak, Mingwei Zhu, Nag B. Patibandla
  • Publication number: 20230356540
    Abstract: Embodiments of the present disclosure relate to methods, systems, and apparatus for inkjet printing self-assembled monolayer (SAM) structures on substrates. In one embodiment, which can be combined with other embodiments, one or more SAM layers are printed on a substrate surface of a substrate in a localized manner such that a portion of the substrate surface is left exposed to a processing region of the inkjet chamber. The printing includes spraying one or more subsections of the substrate surface with an ink, the ink having a SAM composition. The SAM composition includes an active component, and a hydrophobic tail.
    Type: Application
    Filed: May 2, 2023
    Publication date: November 9, 2023
    Inventors: Yingdong LUO, Rami HOURANI, Xiaopei DENG, Kang LUO, Erica CHEN, Ludovic GODET
  • Publication number: 20230352632
    Abstract: A multi-color display includes a backplane having backplane circuitry, an array of micro-LEDs electrically integrated with backplane circuitry of the backplane, a color conversion layer over each of a plurality of light emitting diodes, and a plurality of isolation walls separating adjacent micro-LEDs of the array.
    Type: Application
    Filed: July 7, 2023
    Publication date: November 2, 2023
    Inventors: Daihua Zhang, Yingdong Luo, Mingwei Zhu, Hou T. Ng, Sivapackia Ganapathiappan, Nag B. Patibandla
  • Patent number: 11798831
    Abstract: A method for printing on a substrate includes printing a support structure by printing a liquid precursor material and curing the liquid precursor material, positioning a substrate within the support structure, printing one or more anchors on the substrate and the support structure by printing and curing the liquid precursor material to secure the substrate to the support structure, and printing one or more device structures on the substrate while anchored by printing and curing the liquid precursor material.
    Type: Grant
    Filed: May 2, 2022
    Date of Patent: October 24, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Daihua Zhang, Hou T. Ng, Nag B. Patibandla, Sivapackia Ganapathiappan, Yingdong Luo, Kyuil Cho, Han-Wen Chen
  • Publication number: 20230273355
    Abstract: Methods of dicing optical devices from an optical device substrate are disclosed. The methods include disposing a protective coating only over the optical devices. The optical device substrate includes the optical devices disposed on the surface of the optical device substrate with areas therebetween. The areas of the optical device substrate are exposed by the protective coating. The protective coating includes a polymer, a solvent, and an additive. The methods further include curing the protective coating via a cure process so that the protective coating is water-soluble after the solvent is removed by the cure process, dicing the optical devices from the optical device substrate by projecting a laser beam to the areas between the optical devices, and exposing the protective coating to water to remove the protective coating from the optical devices that are diced.
    Type: Application
    Filed: February 23, 2023
    Publication date: August 31, 2023
    Inventors: Yingdong LUO, Kangkang WANG, Wei-Sheng LEI, Xiaopei DENG, Erica CHEN, Kang LUO, Daihua ZHANG, Rami HOURANI, Ludovic GODET
  • Publication number: 20230256560
    Abstract: A method of forming a polishing pad that has a polishing region and a window region, wherein both regions are made of an interpenetrating polymer network formed from a free-radically polymerized material and a cationically polymerized material.
    Type: Application
    Filed: April 21, 2023
    Publication date: August 17, 2023
    Inventors: Uma Sridhar, Sivapackia Ganapathiappan, Ashwin Murugappan Chockalingam, Rajeev Bajaj, Daniel Redfield, Mayu Felicia Yamamura, Yingdong Luo, Nag B. Patibandla
  • Publication number: 20230219190
    Abstract: Interpenetrating polymer networks (IPNs) for a forming polishing pad for a semiconductor fabrication operation are disclosed. Techniques for forming the polishing pads are provided. In an exemplary embodiment, a polishing pad includes an interpenetrating polymer network formed from a free-radically polymerized material and a cationically polymerized material.
    Type: Application
    Filed: March 21, 2023
    Publication date: July 13, 2023
    Inventors: Uma Sridhar, Sivapackia Ganapathiappan, Ashwin Murugappan Chockalingam, Mayu Felicia Yamamura, Daniel Redfield, Rajeev Bajaj, Yingdong Luo, Nag B. Patibandla
  • Publication number: 20230192971
    Abstract: Methods of curing a deformation in a substrate are provided. In some embodiments, the method includes identifying one or more areas on the substrate with deformation. The method further includes printing a first film on a first area of a surface of the substrate via inkjet printing, the first film being a material that polymerizes and contracts when cured. The method includes printing a second film on a second area of the surface of the substrate via inkjet printing, the second film being a material that polymerizes and contracts when cured. The method further includes curing the first film and the second film to induce a bend in the substrate. In some embodiments, the method includes inkjet printing a third film and a fourth film on the surface of the substrate.
    Type: Application
    Filed: December 20, 2022
    Publication date: June 22, 2023
    Inventors: Yingdong LUO, Xiaopei DENG, Kang LUO, Rami HOURANI, Daihua ZHANG, Ludovic GODET