Patents by Inventor Yingdong Luo

Yingdong Luo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12283647
    Abstract: A photocurable composition includes quantum dots, quantum dot precursor materials, a chelating agent, one or more monomers, and a photoinitiator. The quantum dots are selected to emit radiation in a first wavelength band in the visible light range in response to absorption of radiation in a second wavelength band in the UV or visible light range. The second wavelength band is different than the first wavelength band. The quantum dot precursor materials include metal atoms or metal ions corresponding to metal components present in the quantum dots. The chelating agent is configured to chelate the quantum dot precursor materials. The photoinitiator initiates polymerization of the one or more monomers in response to absorption of radiation in the second wavelength band.
    Type: Grant
    Filed: February 16, 2024
    Date of Patent: April 22, 2025
    Assignee: Applied Materials, Inc.
    Inventors: Yingdong Luo, Daihua Zhang, Hou T. Ng, Sivapackia Ganapathiappan, Nag B. Patibandla
  • Patent number: 12208637
    Abstract: Embodiments of the present disclosure generally relate to optical devices. More specifically, embodiments described herein relate to optical devices and methods of manufacturing a patterned optical device film on an optical device substrate. According to certain embodiments, an inkjet deposition process is used to deposit a patterned inkjet coating layer on the optical device substrate. A deposition process may then be used to deposit an optical device material on the patterned inkjet coating and the optical device substrate. The patterned inkjet coating on the optical device substrate may then be washed with an appropriate detergent to lift-off the patterned inkjet coating layer from the optical device substrate to form the patterned optical device film.
    Type: Grant
    Filed: February 10, 2023
    Date of Patent: January 28, 2025
    Assignee: Applied Materials, Inc.
    Inventors: Yingdong Luo, Jinyu Lu, Takashi Kuratomi, Alexia Adilene Portillo Rivera, Xiaopei Deng, Zhengping Yao, Daihua Zhang, Rami Hourani, Ludovic Godet
  • Publication number: 20240363392
    Abstract: A multi-color display includes a backplane having backplane circuitry, an array of micro-LEDs electrically integrated with backplane circuitry of the backplane, a color conversion layer over each of a plurality of light emitting diodes, and a plurality of isolation walls separating adjacent micro-LEDs of the array.
    Type: Application
    Filed: July 8, 2024
    Publication date: October 31, 2024
    Inventors: Daihua Zhang, Yingdong Luo, Mingwei Zhu, Hou T. Ng, Sivapackia Ganapathiappan, Nag B. Patibandla
  • Publication number: 20240319588
    Abstract: Embodiments of the present disclosure generally relate to imprint compositions and materials and related processes useful for nanoimprint lithography (NIL). In one or more embodiments, a method for preparing an imprinted surface is provided and includes disposing an imprint composition on a substrate, contacting the imprint composition with a stamp having a pattern, converting the imprint composition to an imprint material having the pattern, and removing the stamp from the imprint material. The imprint composition may contain one or more types of nanoparticles, one or more surface ligands, one or more solvents, one or more additives, and one or more acrylates.
    Type: Application
    Filed: May 30, 2024
    Publication date: September 26, 2024
    Inventors: Amita JOSHI, Ian Matthew MCMACKIN, Rami HOURANI, Yingdong LUO, Sivapackia GANAPATHIAPPAN, Ludovic GODET
  • Publication number: 20240295693
    Abstract: Embodiments of the present disclosure generally relate to methods for forming a waveguide. Methods may include measuring a waveguide substrate, the waveguide having a substrate thickness distribution; and depositing an index-matched layer onto a surface of the waveguide, the index-matched layer having a first surface disposed on the waveguide substrate and a second surface opposing the first surface, wherein the index-matched layer is disposed only over a portion of the waveguide substrate, and a device slope of a second surface of the index-matched layer is substantially the same as the waveguide slope of the first surface of the waveguide.
    Type: Application
    Filed: April 8, 2024
    Publication date: September 5, 2024
    Inventors: Yingdong LUO, Zhengping YAO, Daihua ZHANG, David Alexander SELL, Jingyi YANG, Xiaopei DENG, Kevin MESSER, Samarth BHARGAVA, Rami HOURANI, Ludovic GODET
  • Publication number: 20240270007
    Abstract: Embodiments of the present disclosure generally relate to optical devices. More specifically, embodiments described herein relate to optical devices and methods of manufacturing a patterned optical device film on an optical device substrate. According to certain embodiments, an inkjet deposition process is used to deposit a patterned inkjet coating layer on the optical device substrate. A deposition process may then be used to deposit an optical device material on the patterned inkjet coating and the optical device substrate. The patterned inkjet coating on the optical device substrate may then be washed with an appropriate detergent to lift-off the patterned inkjet coating layer from the optical device substrate to form the patterned optical device film.
    Type: Application
    Filed: February 10, 2023
    Publication date: August 15, 2024
    Inventors: Yingdong LUO, Jinyu LU, Takashi KURATOMI, Alexia Adilene PORTILLO RIVERA, Xiaopei DENG, Zhengping YAO, Daihua ZHANG, Rami HOURANI, Ludovic GODET
  • Patent number: 12044963
    Abstract: Embodiments of the present disclosure generally relate to imprint compositions and materials and related processes useful for nanoimprint lithography (NIL). In one or more embodiments, an imprint composition contains one or more types of nanoparticles, one or more surface ligands, one or more solvents, one or more additives, and one or more acrylates.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: July 23, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Amita Joshi, Ian Matthew McMackin, Rami Hourani, Yingdong Luo, Sivapackia Ganapathiappan, Ludovic Godet
  • Patent number: 12033887
    Abstract: A multi-color display includes a backplane having backplane circuitry, an array of micro-LEDs electrically integrated with backplane circuitry of the backplane, a color conversion layer over each of a plurality of light emitting diodes, and a plurality of isolation walls separating adjacent micro-LEDs of the array.
    Type: Grant
    Filed: July 7, 2023
    Date of Patent: July 9, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Daihua Zhang, Yingdong Luo, Mingwei Zhu, Hou T. Ng, Sivapackia Ganapathiappan, Nag B. Patibandla
  • Publication number: 20240194837
    Abstract: A display includes a light emitting diode and a color conversion layer that includes a polymer matrix, a blue photoluminescent material, and a components of a photoinitiator that initiated polymerization to form the polymer matrix. The blue photoluminescent material is selected to absorb ultraviolet light with a maximum wavelength in a range of about 300 nm to about 430 nm and to emit blue light. The blue photoluminescent material also has an emission peak in a range of about 420 nm to about 480 nm. The full width at half maximum of the emission peak is less than 100 nm, and the photoluminescence quantum yield is in a range of 5% to 100%.
    Type: Application
    Filed: February 23, 2024
    Publication date: June 13, 2024
    Inventors: Yingdong Luo, Lisong Xu, Sivapackia Ganapathiappan, Hou T. Ng, Byung Sung Kwak, Mingwei Zhu, Nag B. Patibandla
  • Publication number: 20240194836
    Abstract: A photocurable composition includes quantum dots, quantum dot precursor materials, a chelating agent, one or more monomers, and a photoinitiator. The quantum dots are selected to emit radiation in a first wavelength band in the visible light range in response to absorption of radiation in a second wavelength band in the UV or visible light range. The second wavelength band is different than the first wavelength band. The quantum dot precursor materials include metal atoms or metal ions corresponding to metal components present in the quantum dots. The chelating agent is configured to chelate the quantum dot precursor materials. The photoinitiator initiates polymerization of the one or more monomers in response to absorption of radiation in the second wavelength band.
    Type: Application
    Filed: February 16, 2024
    Publication date: June 13, 2024
    Inventors: Yingdong Luo, Daihua Zhang, Hou T. Ng, Sivapackia Ganapathiappan, Nag B. Patibandla
  • Publication number: 20240142690
    Abstract: An apparatus for waveguides and a method of fabricating a waveguide combiner having at least one grating with trenches gap-filled with variable refractive index materials. At least two trenches of at least one grating includes a first gap-fill material having a first volume and a first refractive index, and a second gap-fill material having a second volume and a second refractive index different than the first refractive index. Control of the deposition of first volume and the deposition of second volume in an inkjet deposition process provide for the formation of the grating with two trenches that have different refractive indices and different gap-fill depths. The first gap-fill material and the second gap-fill material merge to form the gap-filler. Therefore, by controlling the varied refractive indices and different gap-fill depths the waveguide combiner is optimized by efficiency or a color uniformity.
    Type: Application
    Filed: September 22, 2023
    Publication date: May 2, 2024
    Inventors: Yingdong LUO, Jinxin FU, Zhengping YAO, Daihua ZHANG, Ludovic GODET
  • Patent number: 11965103
    Abstract: A formulation, system, and method for additive manufacturing of a polishing pad. The formulation includes monomer, dispersant, and nanoparticles. A method of preparing the formulation includes adding a dispersant that is a polyester derivative to monomer, adding metal-oxide nanoparticles to the monomer, and subjecting the monomer having the nanoparticles and dispersant to sonication to disperse the nanoparticles in the monomer.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: April 23, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Yingdong Luo, Sivapackia Ganapathiappan, Ashwin Murugappan Chockalingam, Daihua Zhang, Uma Sridhar, Daniel Redfield, Rajeev Bajaj, Nag B. Patibandla, Hou T. Ng, Sudhakar Madhusoodhanan
  • Publication number: 20240126012
    Abstract: Embodiments of the present disclosure generally relate to methods for forming a waveguide. Methods may include measuring a waveguide substrate, the waveguide having a substrate thickness distribution; and depositing an index-matched layer onto a surface of the waveguide, the index-matched layer having a first surface disposed on the waveguide substrate and a second surface opposing the first surface, wherein the index-matched layer is disposed only over a portion of the waveguide substrate, and a device slope of a second surface of the index-matched layer is substantially the same as the waveguide slope of the first surface of the waveguide.
    Type: Application
    Filed: October 18, 2023
    Publication date: April 18, 2024
    Inventors: Yingdong LUO, Zhengping YAO, Daihua ZHANG, David Alexander SELL, Jingyi YANG, Xiaopei DENG, Kevin MESSER, Samarth BHARGAVA, Rami HOURANI, Ludovic GODET
  • Patent number: 11942576
    Abstract: A photocurable composition includes a blue photoluminescent material, one or more monomers, and a photoinitiator that initiates polymerization of the one or more monomers in response to absorption of the ultraviolet light. The blue photoluminescent material is selected to absorb ultraviolet light with a maximum wavelength in a range of about 300 nm to about 430 nm and to emit blue light. The blue photoluminescent material also has an emission peak in a range of about 420 nm to about 480 nm. The full width at half maximum of the emission peak is less than 100 nm, and the photoluminescence quantum yield is in a range of 5% to 100%.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: March 26, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Yingdong Luo, Lisong Xu, Sivapackia Ganapathiappan, Hou T. Ng, Byung Sung Kwak, Mingwei Zhu, Nag B. Patibandla
  • Patent number: 11942456
    Abstract: A method of fabricating a multi-color display includes dispensing a photo-curable fluid over a display having an array of light emitting diodes (micro-LEDs) disposed below a cover layer. The cover has an outer surface with a plurality of recesses, and the photo-curable fluid fills the recesses. The photo-curable fluid includes a color conversion agent. A plurality of LEDs in the array are activated to illuminate and cure the photo-curable fluid to form a color conversion layer in the recesses over the activated LEDs. This layer will convert light from these LEDs to light of a first color. An uncured remainder of the photo-curable fluid is removed. Then the process is repeated with a different photo-curable fluid having a different color conversion agent and a different plurality of LEDs. This forms a second color conversion layer in different plurality of recesses to convert light from these LEDs to light of a second color.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: March 26, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Daihua Zhang, Yingdong Luo, Mingwei Zhu, Hou T. Ng, Sivapackia Ganapathiappan, Nag B. Patibandla
  • Patent number: 11911870
    Abstract: Embodiments herein generally relate to polishing pads and methods of forming polishing pads. A polishing pad includes a plurality of polishing elements. Each polishing element comprises an individual surface that forms a portion of a polishing surface of the polishing pad and one or more sidewalls extending downwardly from the individual surface to define a plurality of channels disposed between the polishing elements. Each of the polishing elements has a plurality of pore-features formed therein. Each of the polishing elements is formed of a pre-polymer composition and a sacrificial material composition. In some cases, a sample of the cured pre-polymer composition has a glass transition temperature (Tg) of about 80° C. or greater. A storage modulus (E?) of the cured pre-polymer composition at a temperature of 80° C. (E?80) can be about 200 MPa or greater.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: February 27, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Sivapackia Ganapathiappan, Rajeev Bajaj, Yingdong Luo, Aniruddh Jagdish Khanna, You Wang, Daniel Redfield
  • Patent number: 11908979
    Abstract: A photocurable composition includes quantum dots, quantum dot precursor materials, a chelating agent, one or more monomers, and a photoinitiator. The quantum dots are selected to emit radiation in a first wavelength band in the visible light range in response to absorption of radiation in a second wavelength band in the UV or visible light range. The second wavelength band is different than the first wavelength band. The quantum dot precursor materials include metal atoms or metal ions corresponding to metal components present in the quantum dots. The chelating agent is configured to chelate the quantum dot precursor materials. The photoinitiator initiates polymerization of the one or more monomers in response to absorption of radiation in the second wavelength band.
    Type: Grant
    Filed: September 1, 2022
    Date of Patent: February 20, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Yingdong Luo, Daihua Zhang, Hou T. Ng, Sivapackia Ganapathiappan, Nag B. Patibandla
  • Patent number: 11888096
    Abstract: A photocurable composition includes a nanomaterial selected to emit radiation in a first wavelength band in the visible light range in response to absorption of radiation in a second wavelength band in the UV or visible light range. The second wavelength band is different than the first wavelength band. The photocurable composition further includes one or more (meth)acrylate monomers, a thiol crosslinker, and a photoinitiator that initiates polymerization of the one or more (meth)acrylate monomers in response to absorption of radiation in the second wavelength band. A light-emitting device includes a plurality of light-emitting diodes and the cured photocurable composition in contact with a surface through which radiation in a first wavelength band in the UV or visible light range is emitted from each of the light-emitting diodes.
    Type: Grant
    Filed: July 20, 2021
    Date of Patent: January 30, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Yingdong Luo, Sivapackia Ganapathiappan, Daihua Zhang, Hou T. Ng, Nag B. Patibandla
  • Patent number: 11888093
    Abstract: A multi-color display includes a backplane having backplane circuitry, an array of micro-LEDs electrically integrated with backplane circuitry of the backplane, a first color conversion layer over each of a first plurality of light emitting diodes, a second color conversion layer over each of a second plurality of light emitting diodes, and a plurality of isolation walls separating adjacent micro-LEDs of the array. The micro-LEDs of the array are configured to generate illumination of the same wavelength range, the first color conversion layer converts the illumination to light of a first color, and the second color conversion layer converts the illumination to light of a different second color.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: January 30, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Daihua Zhang, Yingdong Luo, Mingwei Zhu, Hou T. Ng, Sivapackia Ganapathiappan, Nag B. Patibandla
  • Publication number: 20240001398
    Abstract: A method of forming a substrate carrier is provided. The method includes forming a first electrode over a first surface of a substrate, the first electrode arranged in a first pattern including a plurality of segments, wherein portions of the plurality of segments are spaced apart from each other by a plurality of gaps; and dispensing a plurality of droplets of a dielectric material over the substrate and into the plurality of gaps. The plurality of droplets includes a first droplet and a second droplet, the first droplet is dispensed onto a first location over the substrate, the second droplet is dispensed onto a second location over the substrate, a size of the first droplet is at least 10% larger than a size of the second droplet.
    Type: Application
    Filed: June 19, 2023
    Publication date: January 4, 2024
    Inventors: Russell Chin Yee TEO, Yingdong LUO, Ludovic GODET, Daihua ZHANG, Zhengping YAO, James D. STRASSNER