Patents by Inventor Yinghui Shan

Yinghui Shan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160181463
    Abstract: Methods for treating a semiconductor layer including a semiconductor material are presented. A method includes contacting at least a portion of the semiconductor material with a passivating agent. The method further includes forming a first region in the semiconductor layer by introducing a dopant into the semiconductor material; and forming a chalcogen-rich region. The method further includes forming a second region in the semiconductor layer, the second region including a dopant, wherein an average atomic concentration of the dopant in the second region is greater than an average atomic concentration of the dopant in the first region. Photovoltaic devices are also presented.
    Type: Application
    Filed: March 1, 2016
    Publication date: June 23, 2016
    Applicant: First Solar, Inc.
    Inventors: Donald Franklin Foust, Hongbo Cao, Laura Anne Clark, Robert Andrew Garber, Scott Daniel Feldman-Peabody, Wyatt Keith Metzger, Yinghui Shan, Roman Shuba
  • Patent number: 9276157
    Abstract: Methods for treating a semiconductor layer including a semiconductor material are presented. A method includes contacting at least a portion of the semiconductor material with a passivating agent. The method further includes forming a first region in the semiconductor layer by introducing a dopant into the semiconductor material; and forming a chalcogen-rich region. The method further includes forming a second region in the semiconductor layer, the second region including a dopant, wherein an average atomic concentration of the dopant in the second region is greater than an average atomic concentration of the dopant in the first region. Photovoltaic devices are also presented.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: March 1, 2016
    Assignee: First Solar, Inc.
    Inventors: Donald Franklin Foust, Hongbo Cao, Laura Anne Clark, Robert Andrew Garber, Scott Daniel Feldman-Peabody, Wyatt Keith Metzger, Yinghui Shan, Roman Shuba
  • Patent number: 9231134
    Abstract: Photovoltaic devices are presented. A photovoltaic device includes a window layer and a semiconductor layer including a semiconductor material disposed on window layer. The semiconductor layer includes a first region and a second region, the first region disposed proximate to the window layer, and the second region including a chalcogen-rich region, wherein the first region and the second region include a dopant, and an average atomic concentration of the dopant in the second region is greater than an average atomic concentration of the dopant in the first region.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: January 5, 2016
    Assignee: First Solar, Inc.
    Inventors: Donald Franklin Foust, Hongbo Cao, Laura Anne Clark, Robert Andrew Garber, Scott Daniel Feldman-Peabody, Wyatt Keith Metzger, Yinghui Shan, Roman Shuba
  • Patent number: 9209246
    Abstract: A gated microelectronic device is provided that has a source with a source ohmic contact with the source characterized by a source dopant type and concentration. A drain with a drain ohmic contact with the drain characterized by a drain dopant type and concentration. An intermediate channel portion characterized by a channel portion dopant type and concentration. An insulative dielectric is in contact with the channel portion and overlaid in turn by a gate. A gate contact applies a gate voltage bias to control charge carrier accumulation and depletion in the underlying channel portion. This channel portion has a dimension normal to the gate which is fully depleted in the off-state. The dopant type is the same across the source, drain and the channel portion of the device. The device on-state current is determined by the doping and, unlike a MOSFET, is not directly proportional to device capacitance.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: December 8, 2015
    Assignee: The Penn State University
    Inventors: Stephen J. Fonash, Yinghui Shan, Somasundaram Ashok
  • Publication number: 20140065763
    Abstract: Methods for treating a semiconductor layer including a semiconductor material are presented. A method includes contacting at least a portion of the semiconductor material with a passivating agent. The method further includes forming a first region in the semiconductor layer by introducing a dopant into the semiconductor material; and forming a chalcogen-rich region. The method further includes forming a second region in the semiconductor layer, the second region including a dopant, wherein an average atomic concentration of the dopant in the second region is greater than an average atomic concentration of the dopant in the first region. Photovoltaic devices are also presented.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Donald Franklin Foust, Hongbo Cao, Laura Anne Clark, Robert Andrew Garber, Scott Daniel Feldman-Peabody, Wyatt Keith Metzger, Yinghui Shan, Roman Shuba
  • Publication number: 20140060635
    Abstract: Photovoltaic devices are presented. A photovoltaic device includes a window layer and a semiconductor layer including a semiconductor material disposed on window layer. The semiconductor layer includes a first region and a second region, the first region disposed proximate to the window layer, and the second region including a chalcogen-rich region, wherein the first region and the second region include a dopant, and an average atomic concentration of the dopant in the second region is greater than an average atomic concentration of the dopant in the first region.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Donald Franklin Foust, Hongbo Cao, Laura Anne Clark, Robert Andrew Garber, Scott Daniel Feldman-Peabody, Wyatt Keith Metzger, Yinghui Shan, Roman Shuba
  • Publication number: 20130285149
    Abstract: A gated microelectronic device is provided that has a source with a source ohmic contact with the source characterized by a source dopant type and concentration. A drain with a drain ohmic contact with the drain characterized by a drain dopant type and concentration. An intermediate channel portion characterized by a channel portion dopant type and concentration. An insulative dielectric is in contact with the channel portion and overlaid in turn by a gate. A gate contact applies a gate voltage bias to control charge carrier accumulation and depletion in the underlying channel portion. This channel portion has a dimension normal to the gate which is fully depleted in the off-state. The dopant type is the same across the source, drain and the channel portion of the device. The device on-state current is determined by the doping and, unlike a MOSFET, is not directly proportional to device capacitance.
    Type: Application
    Filed: July 3, 2013
    Publication date: October 31, 2013
    Inventors: Stephen J. Fonash, Yinghui Shan, Somasundaram Ashok
  • Patent number: 8569834
    Abstract: A gated microelectronic device is provided that has a source with a source ohmic contact with the source characterized by a source dopant type and concentration. A drain with a drain ohmic contact with the drain characterized by a drain dopant type and concentration. An intermediate channel portion characterized by a channel portion dopant type and concentration. An insulative dielectric is in contact with the channel portion and overlaid in turn by a gate. A gate contact applies a gate voltage bias to control charge carrier accumulation and depletion in the underlying channel portion. This channel portion has a dimension normal to the gate which is fully depleted in the off-state. The dopant type is the same across the source, drain and the channel portion of the device. The device on-state current is determined by the doping and, unlike a MOSFET, is not directly proportional to device capacitance.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: October 29, 2013
    Assignee: The Penn State Research Foundation
    Inventors: Stephen J. Fonash, Yinghui Shan, Somasundaram Ashok
  • Publication number: 20080251862
    Abstract: A gated microelectronic device is provided that has a source with a source ohmic contact with the source characterized by a source dopant type and concentration. A drain with a drain ohmic contact with the drain characterized by a drain dopant type and concentration. An intermediate channel portion characterized by a channel portion dopant type and concentration. An insulative dielectric is in contact with the channel portion and overlaid in turn by a gate. A gate contact applies a gate voltage bias to control charge carrier accumulation and depletion in the underlying channel portion. This channel portion has a dimension normal to the gate which is fully depleted in the off-state. The dopant type is the same across the source, drain and the channel portion of the device. The device on-state current is determined by the doping and, unlike a MOSFET, is not directly proportional to device capacitance.
    Type: Application
    Filed: April 14, 2008
    Publication date: October 16, 2008
    Inventors: Stephen J. Fonash, Yinghui Shan, S. Ashok
  • Publication number: 20080135826
    Abstract: This invention presents a novel method to form uniform or heterogeneous, straight or curved and size-controllable nanostructures including, for example, nanotubes, nanowires, nanoribbons, and nanotapes, including SiNW, using a nanochannel template. In the case of semiconductor nanowires, doping can be included during growth. Electrode contacts are present as needed and may be built in to the template structure. Thus completed devices such as diodes, transistors, solar cells, sensors, and transducers are fabricated, contacted, and arrayed as nanowire or nanotape fabrication is completed. Optionally, the template is not removed and may become part of the structure. Nanodevices such as nanotweezers, nanocantilevers, and nanobridges are formed utilizing the processes of the invention.
    Type: Application
    Filed: June 27, 2007
    Publication date: June 12, 2008
    Inventors: Stephen Fonash, Yinghui Shan, Chih-Yi Peng, Ali Kaan Kalkan, Joseph D. Cuiffi, Daniel Hayes, Paul Butterfoss, Wook Jun Nam
  • Patent number: 7238594
    Abstract: This invention presents a novel method to form uniform or heterogeneous, straight or curved and size-controllable nanostructures including, for example, nanotubes, nanowires, nanoribbons, and nanotapes, including SiNW, using a nanochannel template. In the case of semiconductor nanowires, doping can be included during growth. Electrode contacts are present as needed and may be built in to the template structure. Thus completed devices such as diodes, transistors, solar cells, sensors, and transducers are fabricated, contacted, and arrayed as nanowire or nanotape fabrication is completed. Optionally, the template is not removed and may become part of the structure. Nanodevices such as nanotweezers, nanocantilevers, and nanobridges are formed utilizing the processes of the invention.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: July 3, 2007
    Assignee: The Penn State Research Foundation
    Inventors: Stephen J. Fonash, Yinghui Shan, Chih-Yi Peng, Ali Kaan Kalkan, Joseph D. Cuiffi, Daniel Hayes, Paul Butterfoss, Wook Jun Nam
  • Publication number: 20050176228
    Abstract: This invention presents a novel method to form uniform or heterogeneous, straight or curved and size-controllable nanostructures, nanowires, and nanotapes, including SiNW, in a nanochannel template. In the case of semiconductor nanowires, doping can be included during growth. Electrode contacts are present as needed and built in to the template structure. Thus completed devices such as diodes, transistors, solar cells, sensors, and transducers are fabricated, contacted, and arrayed as nanowire or nanotape fabrication is completed. Optionally, the template is not removed may become part of the structure. Nanostructures such as nanotweezers, nanocantiliver, and nanobridges are formed utilizing the processes of the invention.
    Type: Application
    Filed: December 13, 2004
    Publication date: August 11, 2005
    Inventors: Stephen Fonash, Yinghui Shan, Chih-Yi Peng, Ali Kalkan, Joseph Cuiffi, Daniel Hayes, Paul Butterfoss, Wook Nam