Patents by Inventor YINGKAI Gao

YINGKAI Gao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240356951
    Abstract: Introduced here is a network-accessible platform (or simply “platform”) that is designed to monitor digital activities that are performed across different services to ascertain, in real time, threats to the security of an enterprise. In order to surface insights into the threats posed to an enterprise, the platform can apply machine learning models to data that is representative of digital activities performed on different services with respective accounts. Each model may be trained to understand what constitutes normal behavior for a corresponding employee with respect to a single service or multiple services. Not only can these models be autonomously trained for the employees of the enterprise, but they can also be autonomously applied to detect, characterize, and catalog those digital activities that are indicative of a threat.
    Type: Application
    Filed: April 24, 2024
    Publication date: October 24, 2024
    Inventors: Sanjay Jeyakumar, Evan Reiser, Abhijit Bagri, Maritza Perez, Vineet Edupuganti, Yingkai Gao, Umut Gultepe, Cheng-Lin Yeh, Mark Philip, Tejas Khot, Thomas Dawes, Sanish Mahadik, Benjamin Snider, Cheng Li, Nirmal Balachundhar, Adithya Vellal, Lucas Sonnabend
  • Publication number: 20240356938
    Abstract: Introduced here is a network-accessible platform (or simply “platform”) that is designed to monitor digital activities that are performed across different services to ascertain, in real time, threats to the security of an enterprise. In order to surface insights into the threats posed to an enterprise, the platform can apply machine learning models to data that is representative of digital activities performed on different services with respective accounts. Each model may be trained to understand what constitutes normal behavior for a corresponding employee with respect to a single service or multiple services. Not only can these models be autonomously trained for the employees of the enterprise, but they can also be autonomously applied to detect, characterize, and catalog those digital activities that are indicative of a threat.
    Type: Application
    Filed: April 24, 2024
    Publication date: October 24, 2024
    Inventors: Sanjay Jeyakumar, Evan Reiser, Abhijit Bagri, Maritza Perez, Vineet Edupuganti, Yingkai Gao, Umut Gultepe, Cheng-Lin Yeh, Mark Philip, Tejas Khot, Thomas Dawes, Sanish Mahadik, Benjamin Snider, Cheng Li, Nirmal Balachundhar, Adithya Vellal, Lucas Sonnabend
  • Publication number: 20240356959
    Abstract: Introduced here is a network-accessible platform (or simply “platform”) that is designed to monitor digital activities that are performed across different services to ascertain, in real time, threats to the security of an enterprise. In order to surface insights into the threats posed to an enterprise, the platform can apply machine learning models to data that is representative of digital activities performed on different services with respective accounts. Each model may be trained to understand what constitutes normal behavior for a corresponding employee with respect to a single service or multiple services. Not only can these models be autonomously trained for the employees of the enterprise, but they can also be autonomously applied to detect, characterize, and catalog those digital activities that are indicative of a threat.
    Type: Application
    Filed: April 24, 2024
    Publication date: October 24, 2024
    Inventors: Sanjay Jeyakumar, Evan Reiser, Abhijit Bagri, Maritza Perez, Vineet Edupuganti, Yingkai Gao, Umut Gultepe, Cheng-Lin Yeh, Mark Philip, Tejas Khot, Thomas Dawes, Sanish Mahadik, Benjamin Snider, Cheng Li, Nirmal Balachundhar, Adithya Vellal, Lucas Sonnabend
  • Publication number: 20240354680
    Abstract: Introduced here is a network-accessible platform (or simply “platform”) that is designed to monitor digital activities that are performed across different services to ascertain, in real time, threats to the security of an enterprise. In order to surface insights into the threats posed to an enterprise, the platform can apply machine learning models to data that is representative of digital activities performed on different services with respective accounts. Each model may be trained to understand what constitutes normal behavior for a corresponding employee with respect to a single service or multiple services. Not only can these models be autonomously trained for the employees of the enterprise, but they can also be autonomously applied to detect, characterize, and catalog those digital activities that are indicative of a threat.
    Type: Application
    Filed: April 24, 2024
    Publication date: October 24, 2024
    Inventors: Sanjay Jeyakumar, Evan Reiser, Abhijit Bagri, Maritza Perez, Vineet Edupuganti, Yingkai Gao, Umut Gultepe, Cheng-Lin Yeh, Mark Philip, Tejas Khot, Thomas Dawes, Sanish Mahadik, Benjamin Snider, Cheng Li, Nirmal Balachundhar, Adithya Vellal, Lucas Sonnabend
  • Publication number: 20230289619
    Abstract: Method(s), apparatus, and system(s) are provided for selecting a data model configuration for use in training predictive models comprise receiving two or more data model configurations, extracting a data model for each of the two or more data model configurations from a knowledge graph, generating a separate predictive model for each of the extracted data models, scoring the output of each separate predictive model based on a benchmark data set, and selecting at least one data model configuration of the two or more data model configurations based on the output scores.
    Type: Application
    Filed: August 4, 2021
    Publication date: September 14, 2023
    Inventors: Rachel HODOS, Yingkai GAO, Daniel Lawrence NEIL, Pierre-Louis Maurice Valentin CEDOZ
  • Publication number: 20220270718
    Abstract: A computer-implemented method of electronically mining medical and scientific datasets to determine a ranking indicating a level of evidence for an association between two entities is disclosed. The method comprises receiving a representation of an entity pair, performing first data mining on one or more unstructured datasets to generate one or more first scores each representing an extent of association between the entities of the entity pair, and performing second data mining on one or more structured datasets to generate one or more second scores each representing an extent of association between the entities of the entity pair. The method also comprises using a classifier to determine a predicted ranking for the entity pair using the one or more first scores and the one or more second scores, and providing the predicted ranking to a user as an indication of the strength of evidence for an association between the entities of the entity pair.
    Type: Application
    Filed: July 10, 2020
    Publication date: August 25, 2022
    Applicant: BENEVOLENTAI TECHNOLOGY LIMITED
    Inventors: Daniel Lawrence Neil, Alix Mary Benedicte LaCoste, Alexander DeGiorgio, Ian Churcher, Russell David Sutherland, Yingkai Gao
  • Publication number: 20190303535
    Abstract: Link prediction for biomedical entities. A neural network is trained using known associations between biomedical entities, including their vector representations and additional information-carrying content describing the biomedical entities. The trained network infers or predicts unobserved associations between two entities.
    Type: Application
    Filed: April 3, 2018
    Publication date: October 3, 2019
    Inventors: Achille B. Fokoue-Nkoutche, YINGKAI Gao, HENG LUO, PING ZHANG, Sanjoy Dey