Patents by Inventor Yinglu Jiang

Yinglu Jiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10998575
    Abstract: An inorganic solid electrolyte glass phase composite is provided comprising a substance of the general formula La2/3-xLi3xTiO3 wherein x ranges from about 0.04 to about 0.17, and a glass material. The glass material is one or more compounds selected from Li2O, Li2S, Li2SO4, Li3PO4, P2O5, P2O3, Al2O3, SiO2, CaO, MgO, BaO, TiO2, GeO2, SiS2, Sb2O3, SnS, TaS2, P2S5, B2S3, and a combination of two or more thereof. A lithium-ion conducting solid electrolyte composite is disclosed comprising a lithium-ion conductive substance of the general formula La2/3-xLi3xTiO3—Z wherein x ranges form about 0.04 to 0.17, and wherein “Z” is the glass material identified above. A battery is disclosed having at least one cathode and anode and an inorganic solid electrolyte glass phase composite as described above disposed on or between at least one of the cathode and the anode.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: May 4, 2021
    Assignee: West Virginia University
    Inventors: Hui Zhang, Xingbo Liu, Yinglu Jiang
  • Publication number: 20150132662
    Abstract: An inorganic solid electrolyte glass phase composite is provided comprising a substance of the general formula La2/3-xLi3xTiO3 wherein x ranges from about 0.04 to about 0.17, and a glass material. The glass material is one or more compounds selected from Li2O, Li2S, Li2SO4, Li3PO4, P2O5, P2O3, Al2O3, SiO2, CaO, MgO, BaO, TiO2, GeO2, SiS2, Sb2O3, SnS, TaS2, P2S5, B253, and a combination of two or more thereof. A lithium-ion conducting solid electrolyte composite is disclosed comprising a lithium-ion conductive substance of the general formula La2/3-xLi3xTiO3—Z wherein x ranges form about 0.04 to 0.17, and wherein “Z” is the glass material identified above. A battery is disclosed having at least one cathode and anode and an inorganic solid electrolyte glass phase composite as described above disposed on or between at least one of the cathode and the anode.
    Type: Application
    Filed: September 17, 2014
    Publication date: May 14, 2015
    Inventors: Hui Zhang, Xingbo Liu, Yinglu Jiang
  • Patent number: 8865354
    Abstract: An inorganic solid electrolyte glass phase composite is provided comprising a substance of the general formula La2/3-xLi3xTiO3 wherein x ranges from about 0.04 to about 0.17, and a glass material. The glass material is one or more compounds selected from Li2O, Li2S, Li2SO4, Li3PO4, B2O3, P2O5, P2O3, Al2O3, SiO2, CaO, MgO, BaO, TiO2, GeO2, SiS2, Sb2O3, SnS, TaS2, P2S5, B2S3, and a combination of two or more thereof. A lithium-ion conducting solid electrolyte composite is disclosed comprising a lithium-ion conductive substance of the general formula La2/3-xLi3xTiO3—Z wherein x ranges form about 0.04 to 0.17, and wherein “Z” is the glass material identified above. A battery is disclosed having at least one cathode and anode and an inorganic solid electrolyte glass phase composite as described above disposed on or between at least one of the cathode and the anode.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: October 21, 2014
    Assignee: West Virginia University
    Inventors: Hui Zhang, Yinglu Jiang, Xingbo Liu
  • Patent number: 8173007
    Abstract: A system and method for the high temperature in-situ determination of corrosion characteristics of a molten metal on an alloy under study is provided which takes place within an insulated furnace. A graphite crucible provided in the furnace contains an electrolyte formed from a molten salt of a metal halide. A reference electrode formed from the same metal as the electrolyte is immersed in the electrolyte solution in the graphite crucible. A beta-alumina crucible containing a molten metal is also provided within the furnace and preferably within the graphite crucible. A measuring electrode formed from the alloy under study is immersed in the molten metal. Standard electrochemical techniques are used to measure and analyze the electrochemical effects of corrosion of the molten metal on the alloy.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: May 8, 2012
    Assignee: West Virginia University
    Inventors: Jing Xu, Xingbo Liu, Yinglu Jiang, Frank Goodwin
  • Publication number: 20110318650
    Abstract: An inorganic solid electrolyte glass phase composite is provided comprising a substance of the general formula La2/3-xLi3xTiO3 wherein x ranges from about 0.04 to about 0.17, and a glass material. The glass material is one or more compounds selected from Li2O, Li2S, Li2SO4, Li3PO4, B2O3, P2O5, P2O3, Al2O3, SiO2, CaO, MgO, BaO, TiO2, GeO2, SiS2, Sb2O3, SnS, TaS2, P2S5, B2S3, and a combination of two or more thereof. A lithium-ion conducting solid electrolyte composite is disclosed comprising a lithium-ion conductive substance of the general formula La2/3-xLi3xTiO3—Z wherein x ranges form about 0.04 to 0.17, and wherein “Z” is the glass material identified above. A battery is disclosed having at least one cathode and anode and an inorganic solid electrolyte glass phase composite as described above disposed on or between at least one of the cathode and the anode.
    Type: Application
    Filed: March 29, 2011
    Publication date: December 29, 2011
    Applicant: West Virginia University
    Inventors: Hui Zhang, Yinglu Jiang, Xingbo Liu
  • Publication number: 20090101522
    Abstract: A system and method for the high temperature in-situ determination of corrosion characteristics of a molten metal on an alloy under study is provided which takes place within an insulated furnace. A graphite crucible provided in the furnace contains an electrolyte formed from a molten salt of a metal halide. A reference electrode formed from the same metal as the electrolyte is immersed in the electrolyte solution in the graphite crucible. A beta-alumina crucible containing a molten metal is also provided within the furnace and preferably within the graphite crucible. A measuring electrode formed from the alloy under study is immersed in the molten metal. Standard electrochemical techniques are used to measure and analyze the electrochemical effects of corrosion of the molten metal on the alloy.
    Type: Application
    Filed: May 29, 2008
    Publication date: April 23, 2009
    Inventors: Jing Xu, Xingbo Liu, Yinglu Jiang, Frank Goodwin