Patents by Inventor Yingnan Jiang

Yingnan Jiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9573825
    Abstract: The present invention discloses a method for advanced treatment of bio-treated coking wastewater. It employs polymeric ferric sulfate (PFS) and polyacrylamide (PAM) as the flocculant for the pre-treatment of bio-treated effluent. After the process of precipitation and filtration, the effluent is guided through an adsorption column filled with environmentally-friendly nano-composites whereby the advanced treatment of the bio-treated coking wastewater is achieved. When the absorption process reaches the breakthrough point, the adsorption operation will be stopped and sodium hydroxide solution is used as the desorption reagent for regenerating the nano-composites. The high-concentrated component of the desorption liquid is sent out for incineration or production of coal water slurry, meanwhile the low-concentrated component of the desorption liquid is used to prepare sodium hydroxide solution for the adsorption process of the next batch.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: February 21, 2017
    Assignee: NANJING UNIVERSITY
    Inventors: Bingcai Pan, Wenlan Yang, Lu Lv, Weiming Zhang, Yingnan Jiang
  • Patent number: 9392758
    Abstract: The invention relates to methods and compositions for genetic transformation of both juvenile and mature citrus. In some embodiments, the invention provides methods and compositions for genetic transformation of citrus using Rhizobia-mediated DNA delivery, and also methods of enhancing the frequency of genetic transformation of mature citrus by any DNA transfer method, including Sinorhizobium. Internodal stem sections prepared from epicotyls of citrus seedlings or freshly emerging shoots of mature citrus plants (e.g., first shoots from buds of mature plants following grafting onto rootstock or very young shoots of mature plants) are preconditioned for transformation by inducing callus formation on an artificial medium. All callus and any developing meristematic regions in immediately adjacent tissue are substantially or completely removed and the preconditioned explants are then transformed by Sinorhizobium or other known methods.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: July 19, 2016
    Assignee: INTEGRATED PLANT GENETICS, INC.
    Inventors: Dean W. Gabriel, Giovana J. Perazzo-Ratto, Yingnan Jiang
  • Patent number: 9181310
    Abstract: The present invention provides compositions and methods for killing or suppressing growth of Gram-negative bacteria that infect, infest or cause disease in plants, including pathogenic, saprophytic and opportunistic microbes that cause disease in plants and food borne illness in people or in animal feed.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: November 10, 2015
    Assignees: University of Florida Research Foundation, Inc., Integrated Plant Genetics, Inc.
    Inventors: Dean W. Gabriel, Yingnan Jiang
  • Publication number: 20150252380
    Abstract: The present invention provides compositions and methods for killing or suppressing growth of Gram-negative bacteria that infect, infest or cause disease in plants, including pathogenic, saprophytic and opportunistic microbes that cause disease in plants and food borne illness in people or in animal feed.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 10, 2015
    Inventors: Dean W. GABRIEL, Yingnan Jiang
  • Publication number: 20150076070
    Abstract: The present invention discloses a method for advanced treatment of bio-treated coking wastewater, belonging to the field of advanced treatment and recycled use of wastewater. It adopts polymeric ferric sulfate (PFS) and polyacrylamide (PAM) as the flocculant for pre-treatment of bio-treated effluent. After the process of precipitation and filtration, the effluent is guided through an adsorption column filled with environmentally-friendly nano-composites whereby the advanced treatment of the bio-treated coking wastewater is achieved. When the absorption process reaches the breakthrough point, the adsorption operation will be stopped and sodium hydroxide solution is used as the desorption reagent for regenerating the nano-composites; the high-concentrated component of the desorption liquid is sent out for incineration or production of coal water slurry, meanwhile the low-concentrated component of the desorption liquid is used to prepare sodium hydroxid solution for the adsorption process of the next batch.
    Type: Application
    Filed: October 23, 2012
    Publication date: March 19, 2015
    Inventors: Bingcai Pan, Wenlan Yang, Lu Lv, Weiming Zhang, Yingnan Jiang
  • Publication number: 20130061349
    Abstract: The invention relates to methods and compositions for genetic transformation of both juvenile and mature citrus. In some embodiments, the invention provides methods and compositions for genetic transformation of citrus using Rhizobia-mediated DNA delivery, and also methods of enhancing the frequency of genetic transformation of mature citrus by any DNA transfer method, including Sinorhizobium. Internodal stem sections prepared from epicotyls of citrus seedlings or freshly emerging shoots of mature citrus plants (e.g., first shoots from buds of mature plants following grafting onto rootstock or very young shoots of mature plants) are preconditioned for transformation by inducing callus formation on an artificial medium. All callus and any developing meristematic regions in immediately adjacent tissue are substantially or completely removed and the preconditioned explants are then transformed by Sinorhizobium or other known methods.
    Type: Application
    Filed: August 24, 2012
    Publication date: March 7, 2013
    Applicant: Integrated Plant Genetics, Inc.
    Inventors: Dean W. Gabriel, Giovana J. Perazzo-Ratto, Yingnan Jiang