Patents by Inventor Yinshan Feng

Yinshan Feng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200318878
    Abstract: An electronic expansion valve, a heat exchange system, and a control for controlling an electronic expansion valve. The electronic expansion valve includes: a valve body; a first temperature sensor configured to detect an evaporator temperature Teva; a second temperature sensor configured to detect a compressor inlet temperature Tsue; a third temperature sensor configured to detect a compressor outlet temperature Tdis; a fourth temperature sensor configured to detect a condenser temperature Tcon; and a controller, which is associated with the first temperature sensor, the second temperature sensor, the third temperature sensor and the fourth temperature sensor, and which adjusts an opening degree of the valve body based on temperature signals from the first temperature sensor, the second temperature sensor, the third temperature sensor and the fourth temperature sensor.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 8, 2020
    Inventors: Parmesh Verma, Yinshan Feng
  • Publication number: 20200318839
    Abstract: An air conditioning system and a control method thereof. The air conditioning system includes a main circuit and a first subcooling circuit, wherein the main circuit has: a main compressor and an injector; a gas cooler and a gas-liquid separator connected between the main compressor and the injector; and a main throttling element and an evaporator connected between the gas-liquid separator and the injector; and wherein the first subcooling circuit has: a first subcooling compressor, a first condenser, a first subcooling throttling element and a first subcooler connected in sequence; wherein the first subcooler is further disposed in a flow path between the outlet of the injector and the gas-liquid separator.
    Type: Application
    Filed: April 7, 2020
    Publication date: October 8, 2020
    Inventors: Hongsheng Liu, Yinshan Feng, Frederick J. Cogswell, Parmesh Verma
  • Publication number: 20200248932
    Abstract: A refrigerated system includes a heat recovery system defining a heat recovery fluid flow path. The heat recovery system includes an ejector having a primary inlet and a secondary inlet and a first heat exchanger within which heat is transferred between a heat recovery fluid and a secondary fluid. The first heat exchanger is located upstream from the primary inlet of the ejector. A second heat exchanger within which heat is transferred from a heat transfer fluid to the heat recovery fluid is upstream from the secondary inlet of the ejector. At least one recovery heat exchanger is positioned along the heat recovery fluid flow path directly upstream from the first heat exchanger.
    Type: Application
    Filed: January 31, 2020
    Publication date: August 6, 2020
    Inventors: Frederick J. Cogswell, Yinshan Feng, Parmesh Verma, Hongsheng Liu, Dhruv Chanakya Hoysall
  • Publication number: 20200248938
    Abstract: A refrigerated system includes a vapor compression system defining a refrigerant flow path and a heat recovery system defining a heat recovery fluid flow path. The heat recovery system is thermally coupled to the vapor compression system. The heat recovery system includes a first heat exchanger within which heat is transferred between a heat recovery fluid and an engine coolant and at least one recovery heat exchanger positioned along the heat recovery fluid flow path directly upstream from the first heat exchanger.
    Type: Application
    Filed: January 31, 2020
    Publication date: August 6, 2020
    Inventors: Hongsheng Liu, Parmesh Verma, Frederick J. Cogswell, Yinshan Feng
  • Publication number: 20200149791
    Abstract: Disclosed is a refrigeration system including a heat transfer fluid circulation loop configured to allow a refrigerant to circulate through the circulation loop. A purge gas outlet is in operable communication with the heat transfer fluid circulation loop. The system also includes at least one gas permeable membrane having a first side in operable communication with the purge gas outlet and a second side. The membrane includes a separation layer including a porous inorganic material with pores of a size to allow passage of contaminants through the membrane and restrict passage of the through the membrane, and a polymer coating over the separation layer. A permeate outlet is in operable communication with the second side of the membrane.
    Type: Application
    Filed: November 9, 2018
    Publication date: May 14, 2020
    Inventors: Rajiv Ranjan, Yinshan Feng, Haralambos Cordatos, Parmesh Verma, Zissis A. Dardas
  • Patent number: 10584906
    Abstract: Disclosed is a refrigeration system including a heat transfer fluid circulation loop configured to allow a refrigerant to circulate therethrough. A purge gas outlet is in operable communication with the heat transfer fluid circulation loop. The system also includes at least one gas permeable membrane having a first side in operable communication with the purge gas outlet and a second side. The membrane includes a porous inorganic material with pores of a size to allow passage of contaminants through the membrane and restrict passage of the refrigerant through the membrane. The system also includes a permeate outlet in operable communication with a second side of the membrane.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: March 10, 2020
    Assignee: CARRIER CORPORATION
    Inventors: Rajiv Ranjan, Haralambos Cordatos, Zissis A. Dardas, Georgios S. Zafiris, Yinshan Feng, Parmesh Verma, Michael A. Stark
  • Publication number: 20200025429
    Abstract: Disclosed is a refrigeration system including a heat transfer fluid circulation loop configured to allow a refrigerant to circulate therethrough, a purge outlet from the heat transfer fluid circulation loop, and at least one gas permeable membrane having a first side in communication with the purge outlet. The membrane includes a porous inorganic material with pores of a size to allow passage of contaminants through the membrane and restrict passage of the refrigerant through the membrane. A retentate return flow path connects the first side of the membrane to the heat transfer fluid circulation loop.
    Type: Application
    Filed: November 9, 2018
    Publication date: January 23, 2020
    Inventors: Rajiv Ranjan, Yinshan Feng, Parmesh Verma, Zissis A. Dardas
  • Patent number: 10429101
    Abstract: An HVAC&R system that includes a first pumping device configured to circulate a first volume of a first two-phase medium, a second pumping device configured to circulate a second volume of the first two-phase medium, a first plurality of secondary HVAC&R units, a second plurality of secondary HVAC&R units, a first primary HVAC&R unit, and a second primary HVAC&R unit. At least one of the first plurality of secondary HVAC&R units is operably coupled to the first pumping device. At least one of the second plurality of secondary HVAC&R units is operably coupled to the second pumping device. The first primary HVAC&R unit is operably coupled to at least one of the first plurality of secondary HVAC&R units and the first pumping device. The second primary HVAC&R unit is operably coupled to at least one of the second plurality of secondary HVAC&R units and the second pumping device.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: October 1, 2019
    Assignee: CARRIER CORPORATION
    Inventors: Yinshan Feng, Parmesh Verma, Craig R. Walker
  • Publication number: 20190283541
    Abstract: Disclosed is a system for managing power in a transport refrigeration unit (TRU) installed on a trailer, having: a TRU controller configured to execute a range extender mode of operation to manage operations of the TRU and TRU components, wherein the TRU controller: selects a power management strategy from a plurality of demand-side power management strategies; determines, from the selected power management strategy, operational parameters for a TRU; and executes the generated operational parameters.
    Type: Application
    Filed: March 19, 2019
    Publication date: September 19, 2019
    Inventors: Veronica Adetola, Yinshan Feng
  • Patent number: 10401058
    Abstract: A system (20; 300; 500) comprises: a compressor (22) having a suction port (40) and a discharge port (42); an ejector (32) having a motive flow inlet (50), a suction flow inlet (52), and an outlet (54); a separator (34) having an inlet (72), a vapor outlet (74), and a liquid outlet (76); a first heat exchanger (24); at least one expansion device (28, 30; 520); a second heat exchanger (26); and a plurality of conduits and a plurality of valves (100, 120, 130, 140, 144, 148, 150; 100, 140, 144, 148, 150, 320, 340; 100, 120, 530). The conduits and valves are positioned to provide alternative operation in: a cooling mode; a first heating mode wherein the ejector has a motive flow and a suction flow and where utilizing a first expansion device (30; 520) of the at least one expansion device; and a second heating mode utilizing the first expansion device and wherein the ejector has a suction flow and essentially no motive flow.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: September 3, 2019
    Assignee: Carrier Corporation
    Inventors: Yinshan Feng, Ahmad M. Mahmoud, Parmesh Verma
  • Patent number: 10174975
    Abstract: A heat transfer system includes a first two-phase heat transfer fluid vapor/compression circulation loop including a compressor, a heat exchanger condenser, an expansion device, and a heat absorption side of a heat exchanger evaporator/condenser. A first conduit in a closed fluid circulation loop circulates a first heat transfer fluid therethrough. A second two-phase heat transfer fluid circulation loop transfers heat to the first heat transfer fluid circulation loop through the heat exchanger evaporator/condenser, including a heat rejection side of the heat exchanger evaporator/condenser, a liquid pump, a liquid refrigerant reservoir located upstream of the liquid pump and downstream of the heat exchanger evaporator/condenser, and a heat exchanger evaporator. A second conduit in a closed fluid circulation loop circulates a second heat transfer fluid therethrough having an ASHRAE Class A toxicity and a Class 1 or 2L flammability rating.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: January 8, 2019
    Assignee: CARRIER CORPORATION
    Inventors: Yinshan Feng, Jinliang Wang, Futao Zhao, Thomas D. Radcliff, Parmesh Verma
  • Patent number: 10101060
    Abstract: A cooling system includes a main closed-loop refrigerant circuit having a compressor and a condenser. The cooling system also includes a subcooler closed-loop refrigerant circuit having a compressor and a condenser. A portion of the condenser of the subcooler circuit is in parallel with the condenser of the main circuit with respect to air flow. A single exhaust fan can be in fluid communication with both the condenser of the main circuit and the condenser of the subcooler circuit.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: October 16, 2018
    Assignee: Carrier Corporation
    Inventors: Yinshan Feng, Parmesh Verma, Ahmad M. Mahmoud
  • Publication number: 20180209670
    Abstract: A moisture separating system includes a first heat pump, a liquid source in thermal communication with a heat absorption section of the heat pump, and a source of a gas to be treated. The system also includes a hydrophilic nanoporous membrane comprising a first side that receives a flow of gas from the gas source and a second side that receives a flow of liquid from the liquid source.
    Type: Application
    Filed: January 19, 2018
    Publication date: July 26, 2018
    Inventors: Yinshan Feng, Parmesh Verma, Haralambos Cordatos
  • Patent number: 9982920
    Abstract: A method of operating a heat transfer system includes starting operation of a first heat transfer fluid vapor/compression circulation loop including a fluid pumping mechanism, a heat exchanger for rejecting thermal energy from a first heat transfer fluid, and a heat absorption side of an internal heat exchanger. A first conduit in a closed fluid circulation loop circulates the first heat transfer fluid therethrough. Operation of a second two-phase heat transfer fluid circulation loop is started after starting operation of the first heat transfer fluid circulation loop. The second heat transfer fluid circulation loop transfers heat to the first heat transfer fluid circulation loop through the internal heat exchanger and includes a heat rejection side of the internal heat exchanger, a liquid pump, and a heat exchanger evaporator. A second conduit in a closed fluid circulation loop circulates a second heat transfer fluid therethrough.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: May 29, 2018
    Assignee: CARRIER CORPORATION
    Inventors: Yinshan Feng, Jinliang Wang, Futao Zhao, Parmesh Verma, Thomas D. Radcliff
  • Publication number: 20180066880
    Abstract: Disclosed is a refrigeration system including a heat transfer fluid circulation loop configured to allow a refrigerant to circulate therethrough. A purge gas outlet is in operable communication with the heat transfer fluid circulation loop. The system also includes at least one gas permeable membrane having a first side in operable communication with the purge gas outlet and a second side. The membrane includes a porous inorganic material with pores of a size to allow passage of contaminants through the membrane and restrict passage of the refrigerant through the membrane. The system also includes a permeate outlet in operable communication with a second side of the membrane.
    Type: Application
    Filed: November 9, 2017
    Publication date: March 8, 2018
    Inventors: Rajiv Ranjan, Haralambos Cordatos, Zissis A. Dardas, Georgios S. Zafiris, Yinshan Feng, Parmesh Verma, Michael A. Stark
  • Publication number: 20170211853
    Abstract: A system (20; 300; 500) comprises: a compressor (22) having a suction port (40) and a discharge port (42); an ejector (32) having a motive flow inlet (50), a suction flow inlet (52), and an outlet (54); a separator (34) having an inlet (72), a vapor outlet (74), and a liquid outlet (76); a first heat exchanger (24); at least one expansion device (28, 30; 520); a second heat exchanger (26); and a plurality of conduits and a plurality of valves (100, 120, 130, 140, 144, 148, 150; 100, 140, 144, 148, 150, 320, 340; 100, 120, 530). The conduits and valves are positioned to provide alternative operation in: a cooling mode; a first heating mode wherein the ejector has a motive flow and a suction flow and where utilizing a first expansion device (30; 520) of the at least one expansion device; and a second heating mode utilizing the first expansion device and wherein the ejector has a suction flow and essentially no motive flow.
    Type: Application
    Filed: May 14, 2015
    Publication date: July 27, 2017
    Applicant: Carrier Corporation
    Inventors: Yinshan Feng, Ahmad M. Mahmoud, Parmesh Verma
  • Publication number: 20170211851
    Abstract: A cooling system includes a main closed-loop refrigerant circuit having a compressor and a condenser. The cooling system also includes a subcooler closed-loop refrigerant circuit having a compressor and a condenser. A portion of the condenser of the subcooler circuit is in parallel with the condenser of the main circuit with respect to air flow. A single exhaust fan can be in fluid communication with both the condenser of the main circuit and the condenser of the subcooler circuit.
    Type: Application
    Filed: July 22, 2015
    Publication date: July 27, 2017
    Inventors: Yinshan Feng, Parmesh Verma, Ahmad M. Mahmoud
  • Publication number: 20170191712
    Abstract: An HVAC&R system is provided. The system includes a first pumping device configured to circulate a first volume of a first two-phase medium, a second pumping device configured to circulate a second volume of the first two-phase medium, a first plurality of secondary HVAC&R units, wherein at least one of the first plurality of secondary HVAC&R units is operably coupled to the first pumping device, a second plurality of secondary HVAC&R units, wherein at least one of the second plurality of secondary HVAC&R units is operably coupled to the second pumping device, a first primary HVAC&R unit operably coupled to at least one of the first plurality of secondary HVAC&R units and the first pumping device, and a second primary HVAC&R unit operably coupled to at least one of the second plurality of secondary HVAC&R units and the second pumping device.
    Type: Application
    Filed: January 5, 2017
    Publication date: July 6, 2017
    Inventors: Yinshan Feng, Parmesh Verma, Craig R. Walker
  • Patent number: 9574982
    Abstract: A method of measuring concentrations of gas mixtures is disclosed in which an ionic liquid and/or low vapor-pressure organic solvent is exposed to a gas mixture being tested to form a solution of the gas components in the liquid. The vapor pressure of the solution is then measured at one or more other temperatures and compared to predicted vapor pressures based on known individual vapor pressure profiles of the gas components in the liquid in order to determine the actual proportions of the components in the gas sample.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: February 21, 2017
    Assignee: CARRIER CORPORATION
    Inventors: Yinshan Feng, Parmesh Verma, Mary Teresa Lombardo
  • Publication number: 20170045258
    Abstract: Embodiments are directed to obtaining a specification comprising at least one requirement associated with a heating, ventilation, and air-conditioning (HVAC) system, and based on the specification, configuring a control system to control a movement of fluid back and forth across at least one regenerator device of the HVAC system and a mixing of the fluid with ambient air.
    Type: Application
    Filed: April 21, 2014
    Publication date: February 16, 2017
    Inventors: Subramanyaravi Annapragada, Ulf J. Jonsson, Thomas D. Radcliff, Andrzej Ernest Kuczek, John P. Wesson, Neal R. Herring, Stuart S. Ochs, Yinshan Feng, Mikhail B. Gorbounov, Ram Ranjan