Patents by Inventor Yinwen CAO

Yinwen CAO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11652556
    Abstract: A method for all-optical reduction of inter-channel crosstalk for spectrally overlapped optical signals for maximizing utilization of an available spectrum includes receiving a plurality of spectrally overlapped optical signals modulated with data. The method further includes generating conjugate copies of each of the plurality of optical signals using non-linear optics. The method further includes selecting the conjugate copies and adjusting an amplitude, a phase, and a delay of the conjugate copies. The method further includes performing inter-channel interference (ICI) compensation on the spectrally overlapped optical signals in an optical domain by adding the adjusted conjugate copies to the spectrally overlapped optical signals.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: May 16, 2023
    Assignee: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Fatemeh Alishahi, Yinwen Cao, Ahmad Fallahpour, Amirhossein Mohajerin-Ariaei, Alan E. Willner
  • Publication number: 20200403712
    Abstract: A method for all-optical reduction of inter-channel crosstalk for spectrally overlapped optical signals for maximizing utilization of an available spectrum includes receiving a plurality of spectrally overlapped optical signals modulated with data. The method further includes generating conjugate copies of each of the plurality of optical signals using non-linear optics. The method further includes selecting the conjugate copies and adjusting an amplitude, a phase, and a delay of the conjugate copies. The method further includes performing inter-channel interference (ICI) compensation on the spectrally overlapped optical signals in an optical domain by adding the adjusted conjugate copies to the spectrally overlapped optical signals.
    Type: Application
    Filed: March 8, 2019
    Publication date: December 24, 2020
    Inventors: Fatemeh Alishahi, Yinwen Cao, Ahmad Fallahpour, Amirhossein Mohajerin-Ariaei, Alan E. Willner
  • Patent number: 10411811
    Abstract: A system includes a transmitter with multiple transmit devices each having an OAM multiplexer that converts multiple input signals into an OAM beam. Each transmit device outputs a coaxial group of orthogonal OAM beams. The system also includes a receiver that has multiple receive devices each having an OAM demultiplexer that receives the group of OAM beams from a corresponding transmit device. The OAM demultiplexer also converts the coaxial group of mutually orthogonal OAM beams into a plurality of received signals corresponding to input signals represented by the OAM beams. The receiver also includes a MIMO processor that has an equalizer that determines a transfer function corresponding to crosstalk of each of the plurality of received signals. The MIMO processor also reduces the crosstalk of each of the plurality of received signals based on the transfer function and updates the transfer function.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: September 10, 2019
    Assignee: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Alan E. Willner, Yongxiong Ren, Long Li, Guodong Xie, Yinwen Cao, Zhe Wang, Cong Liu, Asher J. Willner
  • Patent number: 10277326
    Abstract: A method for transmitting an optical signal through a first channel and a second channel includes coupling the optical signal with a first pair of comb lines separated by a spacing frequency to create an optical signal copy that is spaced from the optical signal by the spacing frequency. The method also includes filtering a first slice of the optical signal and a second slice of the optical signal copy. The method also includes transmitting the first slice of the optical signal and the second slice of the optical signal through the first channel and the second channel, respectively. The method also includes stitching the first slice of the optical signal with the second slice of the optical signal copy to generate a stitched version of the original optical signal.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: April 30, 2019
    Assignee: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Yinwen Cao, Alan Willner
  • Patent number: 10270536
    Abstract: Methods, systems, and apparatus for phase-sensitive regeneration of a signal without a phase-locked loop and using Brillouin amplification. The system for phase-sensitive regeneration includes a data channel, one or more pumps and a mixing stage. The one or more pumps are coupled with the data channel. The mixing stage is coupled with the data channel and is for processing a data signal that is combined with an output of the one or more pumps and idler or higher harmonic. The mixing stage is configured to amplify the idler or higher harmonic using Brillouin amplification in a Brillouin gain medium to keep the one or more pumps and the data channel phase-locked.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: April 23, 2019
    Assignee: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Ahmed Almaiman, Alan E. Willner, Yinwen Cao, Morteza Ziyadi
  • Publication number: 20180227071
    Abstract: A method for transmitting an optical signal through a first channel and a second channel includes coupling the optical signal with a first pair of comb lines separated by a spacing frequency to create an optical signal copy that is spaced from the optical signal by the spacing frequency. The method also includes filtering a first slice of the optical signal and a second slice of the optical signal copy. The method also includes transmitting the first slice of the optical signal and the second slice of the optical signal through the first channel and the second channel, respectively. The method also includes stitching the first slice of the optical signal with the second slice of the optical signal copy to generate a stitched version of the original optical signal.
    Type: Application
    Filed: February 6, 2018
    Publication date: August 9, 2018
    Inventors: Yinwen Cao, Alan Willner
  • Patent number: 10009096
    Abstract: A method, apparatus and system for estimating frequency offset that includes: a first calculating unit to calculate a correlation value of each of multiple sequences with different lengths according to a received signal containing the sequences with different lengths, where each of the sequences is repeatedly transmitted many times in the signal; a second calculating unit to calculate a decimal frequency according to the correlation value; a first determining unit to determine an integer frequency offset according to the decimal frequency offset to which each of the sequences corresponds; and a second determining unit to determine a total frequency offset according to the decimal frequency offset and the integer frequency offset.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: June 26, 2018
    Assignee: FUJITSU LIMITED
    Inventors: Meng Yan, Yinwen Cao, Zhenning Tao
  • Publication number: 20180034556
    Abstract: A system includes a transmitter with multiple transmit devices each having an OAM multiplexer that converts multiple input signals into an OAM beam. Each transmit device outputs a coaxial group of orthogonal OAM beams. The system also includes a receiver that has multiple receive devices each having an OAM demultiplexer that receives the group of OAM beams from a corresponding transmit device. The OAM demultiplexer also converts the coaxial group of mutually orthogonal OAM beams into a plurality of received signals corresponding to input signals represented by the OAM beams. The receiver also includes a MIMO processor that has an equalizer that determines a transfer function corresponding to crosstalk of each of the plurality of received signals. The MIMO processor also reduces the crosstalk of each of the plurality of received signals based on the transfer function and updates the transfer function.
    Type: Application
    Filed: December 7, 2016
    Publication date: February 1, 2018
    Inventors: Alan E. Willner, Yongxiong Ren, Long Li, Guodong Xie, Yinwen Cao, Zhe Wang, Cong Liu, Asher J. Willner
  • Publication number: 20170272171
    Abstract: Methods, systems, and apparatus for phase-sensitive regeneration of a signal without a phase-locked loop and using Brillouin amplification. The system for phase-sensitive regeneration includes a data channel, one or more pumps and a mixing stage. The one or more pumps are coupled with the data channel. The mixing stage is coupled with the data channel and is for processing a data signal that is combined with an output of the one or more pumps and idler or higher harmonic. The mixing stage is configured to amplify the idler or higher harmonic using Brillouin amplification in a Brillouin gain medium to keep the one or more pumps and the data channel phase-locked.
    Type: Application
    Filed: March 20, 2017
    Publication date: September 21, 2017
    Inventors: Ahmed Almaiman, Alan E. Willner, Yinwen Cao, Morteza Ziyadi
  • Patent number: 9450675
    Abstract: A system for estimating cross-phase modulation (XPM) impairments, wherein the method comprises: determining, according to a pump Jones matrix of a pump channel and a probe Jones matrix of a probe channel of each of fiber spans except for the first fiber span in a fiber transmission system, a polarization mode dispersion (PMD)-induced relative polarization status rotation matrix between channels of the each of fiber spans; and determining, according to the rotation matrix of the each of fiber spans, dispersion of a pump signal of the each of fiber spans, differential delay of the pump signal relative to a probe signal of the each of fiber spans and a gain of the each of fiber spans, polarization crosstalk and phase noise of the XPM impairments in the fiber transmission system. This allows the XPM impairments in the effect of the polarization mode dispersion to be quickly and accurately estimated.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: September 20, 2016
    Assignee: FUJITSU LIMITED
    Inventors: Yinwen Cao, Weizhen Yan, Zhenning Tao
  • Publication number: 20160036524
    Abstract: A method, apparatus and system for estimating frequency offset that includes: a first calculating unit to calculate a correlation value of each of multiple sequences with different lengths according to a received signal containing the sequences with different lengths, where each of the sequences is repeatedly transmitted many times in the signal; a second calculating unit to calculate a decimal frequency according to the correlation value; a first determining unit to determine an integer frequency offset according to the decimal frequency offset to which each of the sequences corresponds; and a second determining unit to determine a total frequency offset according to the decimal frequency offset and the integer frequency offset.
    Type: Application
    Filed: October 9, 2015
    Publication date: February 4, 2016
    Applicant: FUJITSU LIMITED
    Inventors: Meng YAN, Yinwen CAO, Zhenning TAO
  • Publication number: 20130266311
    Abstract: A system for estimating cross-phase modulation (XPM) impairments, wherein the method comprises: determining, according to a pump Jones matrix of a pump channel and a probe Jones matrix of a probe channel of each of fiber spans except for the first fiber span in a fiber transmission system, a polarization mode dispersion (PMD)-induced relative polarization status rotation matrix between channels of the each of fiber spans; and determining, according to the rotation matrix of the each of fiber spans, dispersion of a pump signal of the each of fiber spans, differential delay of the pump signal relative to a probe signal of the each of fiber spans and a gain of the each of fiber spans, polarization crosstalk and phase noise of the XPM impairments in the fiber transmission system.
    Type: Application
    Filed: April 5, 2013
    Publication date: October 10, 2013
    Applicant: FUJITSU LIMITED
    Inventors: Yinwen CAO, Weizhen YAN, Zhenning TAO