Patents by Inventor Yipeng Su

Yipeng Su has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11387659
    Abstract: Aspects of the present disclosure provide for a method. In at least some examples, the method includes controlling gate terminals of one or more transistors of a charger to operate the charger in a buck-boost mode of operation to generate a system voltage based on a bus voltage by performing power conversion through switching, determining that the bus voltage is greater in value than a voltage of a battery coupled to the charger, and controlling the gate terminals of the one or more transistors of the charger to operate the charger in a pass-through mode of operation to generate the system voltage based on the bus voltage without performing power conversion.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: July 12, 2022
    Assignee: Texas Instruments Incorporated
    Inventors: Yipeng Su, Qiong M. Li, Jing Ye, Siew Kuok Hoon
  • Patent number: 10778034
    Abstract: A primary side wireless power transmitter inductively couplable to a secondary side wireless power receiver for supplying power to the wireless power receiver for receiving communications from the secondary side wireless power receiver through the inductive coupling comprises a primary side tank circuit receiving a signal on from the secondary side wireless power receiver. A phase delay or time delay circuit generates a fixed delay clock signal. A sample and hold circuit samples a tank circuit voltage utilizing the fixed phase or time delayed clock signal. A comparator is coupled to an output of the sample and hold circuit for extracting data or commands from the signal stream. A method of operating a primary side wireless transmitter inductively coupled to a secondary side wireless power receiver for supplying power to the wireless power receiver to power a load coupled to the receiver is also disclosed.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: September 15, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ashish Khandelwal, Joseph M. Khayat, Yipeng Su, Robert A. Neidorff, Bharath B. Kannan
  • Patent number: 10763853
    Abstract: In an example, a circuit comprising a first inductor coupled between a first node and a second node, a first PMOS having a source terminal coupled to the second node and a drain terminal coupled to a third node, a second PMOS having a source terminal coupled to a ground voltage potential and a drain terminal coupled to the second node, a third PMOS having a source terminal coupled to a fourth node and a drain terminal coupled to the third node, a fourth PMOS having a source terminal coupled to the ground voltage potential and a drain terminal coupled to the fourth node, a NMOS having a source terminal coupled to the third node and a drain terminal coupled to a fifth node, a second inductor coupled between the fourth node and the fifth node, and a controller.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: September 1, 2020
    Assignee: Texas Instruments Incorporated
    Inventors: Wang Li, Qiong M. Li, Yipeng Su
  • Publication number: 20190393702
    Abstract: Aspects of the present disclosure provide for a method. In at least some examples, the method includes controlling gate terminals of one or more transistors of a charger to operate the charger in a buck-boost mode of operation to generate a system voltage based on a bus voltage by performing power conversion through switching, determining that the bus voltage is greater in value than a voltage of a battery coupled to the charger, and controlling the gate terminals of the one or more transistors of the charger to operate the charger in a pass-through mode of operation to generate the system voltage based on the bus voltage without performing power conversion.
    Type: Application
    Filed: June 25, 2019
    Publication date: December 26, 2019
    Inventors: Yipeng SU, Qiong M. LI, Jing YE, Siew Kuok HOON
  • Patent number: 10432093
    Abstract: A multiphase DC-DC converter includes a first phase circuit including a higher inductance inductor and a second phase circuit including a lower inductance inductor. An output of the inductors are tied together providing a Vout. A phase manager and current sharing (PMCS) block receives a feedback signal from a feedback network coupled between Vout and the PMCS block that receives current feedback from phase circuits. The PMCS block generates driver control signals at a first time when a load is requesting a lower load current for controlling the phase circuits to operate with a first current sharing ratio to provide the lower load current, and at a second time when the load is requesting a higher load current controls the phase circuits to operate at a second current sharing ratio that is different from the first current sharing ratio having a higher average second phase circuit current.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: October 1, 2019
    Assignee: Texas Instruments Incorporated
    Inventors: Kuang-Yao Cheng, Wenkai Wu, Yipeng Su
  • Publication number: 20190103752
    Abstract: In an example, a circuit comprising a first inductor coupled between a first node and a second node, a first PMOS having a source terminal coupled to the second node and a drain terminal coupled to a third node, a second PMOS having a source terminal coupled to a ground voltage potential and a drain terminal coupled to the second node, a third PMOS having a source terminal coupled to a fourth node and a drain terminal coupled to the third node, a fourth PMOS having a source terminal coupled to the ground voltage potential and a drain terminal coupled to the fourth node, a NMOS having a source terminal coupled to the third node and a drain terminal coupled to a fifth node, a second inductor coupled between the fourth node and the fifth node, and a controller.
    Type: Application
    Filed: September 20, 2018
    Publication date: April 4, 2019
    Inventors: Wang LI, Qiong M. LI, Yipeng SU
  • Publication number: 20190103765
    Abstract: A primary side wireless power transmitter inductively couplable to a secondary side wireless power receiver for supplying power to the wireless power receiver for receiving communications from the secondary side wireless power receiver through the inductive coupling comprises a primary side tank circuit receiving a signal on from the secondary side wireless power receiver. A phase delay or time delay circuit generates a fixed delay clock signal. A sample and hold circuit samples a tank circuit voltage utilizing the fixed phase or time delayed clock signal. A comparator is coupled to an output of the sample and hold circuit for extracting data or commands from the signal stream. A method of operating a primary side wireless transmitter inductively coupled to a secondary side wireless power receiver for supplying power to the wireless power receiver to power a load coupled to the receiver is also disclosed.
    Type: Application
    Filed: December 3, 2018
    Publication date: April 4, 2019
    Inventors: Ashish Khandelwal, Joseph M. Khayat, Yipeng Su, Robert A. Neidorff, Bharath B. Kannan
  • Patent number: 10181754
    Abstract: A primary side wireless power transmitter inductively couplable to a secondary side wireless power receiver for supplying power to the wireless power receiver for receiving communications from the secondary side wireless power receiver through the inductive coupling comprises a primary side tank circuit receiving a signal on from the secondary side wireless power receiver. A phase delay or time delay circuit generates a fixed delay clock signal. A sample and hold circuit samples a tank circuit voltage utilizing the fixed phase or time delayed clock signal. A comparator is coupled to an output of the sample and hold circuit for extracting data or commands from the signal stream. A method of operating a primary side wireless transmitter inductively coupled to a secondary side wireless power receiver for supplying power to the wireless power receiver to power a load coupled to the receiver is also disclosed.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: January 15, 2019
    Assignee: Texas Instruments Incorporated
    Inventors: Ashish Khandelwal, Joseph M. Khayat, Yipeng Su, Robert A. Neidorff, Bharath B. Kannan
  • Patent number: 10109404
    Abstract: A low profile inductor structure suitable for use in a high power density power converter has one or more windings formed by vias through a thin, generally planar body of magnetic material forming the inductor core and conductive cladding on the body of magnetic material or material covering the magnetic material body. Variation of inductance with load current and other operational or environmental parameters is reduced to any desired degree by forming a slot that removes all or a portion of the magnetic material between the locations of the vias.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: October 23, 2018
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Yipeng Su, Dongbin Hou, Fred C. Lee, Qiang Li
  • Publication number: 20180254706
    Abstract: A multiphase DC-DC converter includes a first phase circuit including a higher inductance inductor and a second phase circuit including a lower inductance inductor. An output of the inductors are tied together providing a Vout. A phase manager and current sharing (PMCS) block receives a feedback signal from a feedback network coupled between Vout and the PMCS block that receives current feedback from phase circuits. The PMCS block generates driver control signals at a first time when a load is requesting a lower load current for controlling the phase circuits to operate with a first current sharing ratio to provide the lower load current, and at a second time when the load is requesting a higher load current controls the phase circuits to operate at a second current sharing ratio that is different from the first current sharing ratio having a higher average second phase circuit current.
    Type: Application
    Filed: October 23, 2017
    Publication date: September 6, 2018
    Inventors: KUANG-YAO CHENG, WENKAI WU, YIPENG SU
  • Patent number: 9564264
    Abstract: A low profile power converter structure is provide wherein volume is reduced and power density is increased to approach 1 KW/in3 by at least one of forming an inductor as a body of magnetic material embedded in a substrate formed by a plurality of printed circuit board (PCB) lamina and forming inductor windings of PCB cladding and vias which may be of any desired number of turns and may include inversely coupled windings and which provide a lateral flux path, forming the body of magnetic material from high aspect ratio flakes of magnetic material which are aligned with the inductor magnetic field in an insulating organic binder and hot-pressed and providing a four-layer architecture comprising two layers of PCB lamina including the embedded body of magnetic material, a shield layer and an additional layer of PCB lamina, including cladding for supporting and connecting a switching circuit, a capacitor and the inductor.
    Type: Grant
    Filed: February 11, 2014
    Date of Patent: February 7, 2017
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Yipeng Su, Qiang Li, Fred C. Lee, Wenli Zhang
  • Publication number: 20160352146
    Abstract: A primary side wireless power transmitter inductively couplable to a secondary side wireless power receiver for supplying power to the wireless power receiver for receiving communications from the secondary side wireless power receiver through the inductive coupling comprises a primary side tank circuit receiving a signal on from the secondary side wireless power receiver. A phase delay or time delay circuit generates a fixed delay clock signal. A sample and hold circuit samples a tank circuit voltage utilizing the fixed phase or time delayed clock signal. A comparator is coupled to an output of the sample and hold circuit for extracting data or commands from the signal stream. A method of operating a primary side wireless transmitter inductively coupled to a secondary side wireless power receiver for supplying power to the wireless power receiver to power a load coupled to the receiver is also disclosed.
    Type: Application
    Filed: June 6, 2016
    Publication date: December 1, 2016
    Inventors: Ashish Khandelwal, Joseph M. Khayat, Yipeng Su, Robert A. Neidorff, Bharath B. Kannan
  • Patent number: 9362755
    Abstract: A primary side wireless power transmitter inductively couplable to a secondary side wireless power receiver for supplying power to the wireless power receiver for receiving communications from the secondary side wireless power receiver through the inductive coupling comprises a primary side tank circuit receiving a signal on from the secondary side wireless power receiver. A phase delay or time delay circuit generates a fixed delay clock signal. A sample and hold circuit samples a tank circuit voltage utilizing the fixed phase or time delayed clock signal. A comparator is coupled to an output of the sample and hold circuit for extracting data or commands from the signal stream. A method of operating a primary side wireless transmitter inductively coupled to a secondary side wireless power receiver for supplying power to the wireless power receiver to power a load coupled to the receiver is also disclosed.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: June 7, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ashish Khandelwal, Joseph M. Khayat, Yipeng Su, Robert A. Neidorff, Bharath B. Kannan
  • Patent number: 9362756
    Abstract: A primary side wireless power transmitter inductively couplable to a secondary side wireless power receiver for receiving communications from the secondary side wireless power receiver through the inductive coupling having a primary side tank circuit receiving a signal from the secondary side wireless power receiver. A phase delay or time delay circuit generates a fixed delay clock signal from a signal utilized to excite the primary side tank circuit. A sample and hold circuit samples a tank circuit voltage utilizing the fixed phase or time delayed clock signal. A comparator is coupled to an output of the sample and hold circuit for extracting data or commands from the signal stream. A method of operating a primary side wireless transmitter inductively coupled to a secondary side wireless power receiver for supplying power to the wireless power receiver to power a load coupled to the receiver is also disclosed.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: June 7, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ashish Khandelwal, Yipeng Su
  • Publication number: 20160086723
    Abstract: A low profile inductor structure suitable for use in a high power density power converter has one or more windings formed by vias through a thin, generally planar body of magnetic material forming the inductor core and conductive cladding on the body of magnetic material or material covering the magnetic material body. Variation of inductance with load current and other operational or environmental parameters is reduced to any desired degree by forming a slot that removes all or a portion of the magnetic material between the locations of the vias.
    Type: Application
    Filed: December 2, 2015
    Publication date: March 24, 2016
    Inventors: Yipeng Su, Dongbin Hou, Fred C. Lee, Qiang Li
  • Publication number: 20150171932
    Abstract: A primary side wireless power transmitter inductively couplable to a secondary side wireless power receiver for receiving communications from the secondary side wireless power receiver through the inductive coupling having a primary side tank circuit receiving a signal from the secondary side wireless power receiver. A phase delay or time delay circuit generates a fixed delay clock signal from a signal utilized to excite the primary side tank circuit. A sample and hold circuit samples a tank circuit voltage utilizing the fixed phase or time delayed clock signal. A comparator is coupled to an output of the sample and hold circuit for extracting data or commands from the signal stream. A method of operating a primary side wireless transmitter inductively coupled to a secondary side wireless power receiver for supplying power to the wireless power receiver to power a load coupled to the receiver is also disclosed.
    Type: Application
    Filed: September 30, 2014
    Publication date: June 18, 2015
    Inventors: Ashish Khandelwal, Yipeng Su
  • Publication number: 20150171935
    Abstract: A primary side wireless power transmitter inductively couplable to a secondary side wireless power receiver for supplying power to the wireless power receiver for receiving communications from the secondary side wireless power receiver through the inductive coupling comprises a primary side tank circuit receiving a signal on from the secondary side wireless power receiver. A phase delay or time delay circuit generates a fixed delay clock signal. A sample and hold circuit samples a tank circuit voltage utilizing the fixed phase or time delayed clock signal. A comparator is coupled to an output of the sample and hold circuit for extracting data or commands from the signal stream. A method of operating a primary side wireless transmitter inductively coupled to a secondary side wireless power receiver for supplying power to the wireless power receiver to power a load coupled to the receiver is also disclosed.
    Type: Application
    Filed: September 30, 2014
    Publication date: June 18, 2015
    Inventors: Ashish Khandelwal, Joseph M. Khayat, Yipeng Su, Robert A. Neidorff, Bharath B. Kannan
  • Publication number: 20150062989
    Abstract: A low profile power converter structure is provide wherein volume is reduced and power density is increased to approach 1 KW/in3 by at least one of forming an inductor as a body of magnetic material embedded in a substrate formed by a plurality of printed circuit board (PCB) lamina and forming inductor windings of PCB cladding and vias which may be of any desired number of turns and may include inversely coupled windings and which provide a lateral flux path, forming the body of magnetic material from high aspect ratio flakes of magnetic material which are aligned with the inductor magnetic field in an insulating organic binder and hot-pressed and providing a four-layer architecture comprising two layers of PCB lamina including the embedded body of magnetic material, a shield layer and an additional layer of PCB lamina, including cladding for supporting and connecting a switching circuit, a capacitor and the inductor.
    Type: Application
    Filed: February 11, 2014
    Publication date: March 5, 2015
    Applicant: Virginia Tech Intellectual Properties, Inc.
    Inventors: Yipeng Su, Qiang Li, Fred C. Lee, Wenli Zhang
  • Patent number: 7444646
    Abstract: A method of creating drive component object and realizing device drive program multiplicity on basis of category, in which the drive component class is defined and realized at first, then the component customer program creates drive object with category intellectual pointer. In present invention, the operation system selects automatically the corresponding component based on specified component kind by customer specification and realizes further a multi-mode access to drive program from application program. In present invention, certain overheads for efficiency are needed to be added only in the dynamic binding in course of drive object creating; once drive object is created, the operation system would returns the common interface realized by drive object back to the application program and application program may invoke directly the particular drive object method, it has no extra efficiency overhead and realizes a multi-mode access to drive program from application program.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: October 28, 2008
    Assignee: Koretide (Shanghai) Co.
    Inventors: Yipeng Su, Rong Chen, Yongwen Du, Yuzhou Liang
  • Publication number: 20040153580
    Abstract: A component based operation system dynamic device drive method, in which the operation system manages all the device and drive component object via device manager, the customer program creates drive component object through device manager, the device manager communicates with drive component object, and the drive component object supplies application interface to customer program. In this invention, the drive program is realized in component-wise way and only when drive program is needed by application program, the drive program is loaded and drive component object is created; once drive component object application ended, the drive program would be deleted and downloaded from internal storage.
    Type: Application
    Filed: December 30, 2003
    Publication date: August 5, 2004
    Inventors: Rong Chen, Yipeng Su, Yongwen Du, Kang Deng