Patents by Inventor Yir-Shyuan Wu

Yir-Shyuan Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11535890
    Abstract: An example of a sequencing kit includes a flow cell, an encapsulation matrix precursor composition, and a radical initiator. The flow cell includes a plurality of chambers and primers attached within each of the plurality of chambers. The encapsulation matrix precursor composition consists of a fluid, a monomer or polymer including a radical generating and chain elongating functional group, a radical source, and a crosslinker. The radical initiator is part of the encapsulation matrix precursor composition or is a separate component.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: December 27, 2022
    Assignee: Illumina, Inc.
    Inventors: Xi-Jun Chen, Yir-Shyuan Wu, Tarun Kumar Khurana, Liangliang Qiang, Andrew J. Price, Elisabet Rosas
  • Patent number: 11499192
    Abstract: An example of a sequencing kit includes a flow cell, an encapsulation matrix precursor composition, and a radical initiator. The flow cell includes a plurality of chambers and primers attached within each of the plurality of chambers. The encapsulation matrix precursor composition consists of a fluid, a monomer or polymer including a radical generating and chain elongating functional group, a radical source, and a crosslinker. The radical initiator is part of the encapsulation matrix precursor composition or is a separate component.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: November 15, 2022
    Assignee: Illumina, Inc.
    Inventors: Xi-Jun Chen, Yir-Shyuan Wu, Tarun Kumar Khurana, Liangliang Qiang, Andrew J. Price, Elisabet Rosas
  • Publication number: 20220331792
    Abstract: An example of a flow cell includes a substrate, which includes nano-depressions defined in a surface of the substrate, and interstitial regions separating the nano-depressions. A hydrophobic material layer has a surface that is at least substantially co-planar with the interstitial regions and is positioned to define a hydrophobic barrier around respective sub-sets of the nano-depressions.
    Type: Application
    Filed: April 26, 2022
    Publication date: October 20, 2022
    Inventors: Tarun Kumar Khurana, Arnaud Rival, Lewis J. Kraft, Steven Barnard, M. Shane Bowen, Xi-Jun Chen, Yir-Shyuan Wu, Jeffrey S. Fisher, Dajun Yuan
  • Publication number: 20220275443
    Abstract: Embodiments provided herewith are directed to self-assembled methods of preparing a patterned surface for sequencing applications including, for example, a patterned flow cell or a patterned surface for digital fluidic devices. The methods utilize photolithography to create a patterned surface with a plurality of microscale or nanoscale contours, separated by hydrophobic interstitial regions, without the need of oxygen plasma treatment during the photolithography process. In addition, the methods avoid the use of any chemical or mechanical polishing steps after the deposition of a gel material to the contours.
    Type: Application
    Filed: May 5, 2022
    Publication date: September 1, 2022
    Inventors: Yir-Shyuan Wu, Yan-You Lin, M. Shane Bowen, Cyril Delattre, Fabien Abeille, Tarun Khurana, Arnaud Rival, Poorya Sabounchi, Dajun Yuan, Maria Candelaria Rogert Bacigalupo
  • Publication number: 20220243269
    Abstract: Implementations of a method for seeding sequence libraries on a surface of a sequencing flow cell that allow for spatial segregation of the libraries on the surface are provided. The spatial segregation can be used to index sequence reads from individual sequencing libraries to increase efficiency of subsequent data analysis. In some examples, hydrogel beads containing encapsulated sequencing libraries are captured on a sequencing flow cell and degraded in the presence of a liquid diffusion barrier to allow for the spatial segregation and seeding of the sequencing libraries on the surface of the flow cell. Additionally, examples of systems, methods and compositions are provided relating to flow cell devices configured for nucleic acid library preparation and single cell sequencing. Some examples include flow cell devices having a hydrogel with genetic material disposed therein, and which is retained within the hydrogel during nucleic acid processing.
    Type: Application
    Filed: April 13, 2022
    Publication date: August 4, 2022
    Inventors: Tarun Kumar Khurana, Yir-Shyuan Wu, Xi-Jun Chen, Filiz Gorpe-Yasar, Yan-You Lin, Victoria Popic, Erich B. Jaeger, Mostafa Ronaghi
  • Publication number: 20220226820
    Abstract: Described herein are systems and methods for analyzing biological samples. Including a method for processing an analyte, comprising providing a fluidic device comprising the analyte and one or more polymer precursors; selecting a discrete area within said fluidic device; providing an energy source in optical communication with fluidic device; and selectively supplying a unit of energy generated from the energy source to the fluidic device to generate a polymer matrix within the fluidic device, wherein the polymer matrix is within the discrete area or adjacent to the discrete area.
    Type: Application
    Filed: April 7, 2022
    Publication date: July 21, 2022
    Inventors: Tarun Kumar KHURANA, Ali AGAH, Yir-Shyuan WU, Filiz Gorpe YASAR
  • Patent number: 11390864
    Abstract: In the examples set forth herein, nucleic acid extraction materials are capable of selectively extracting cell free nucleic acids, including cell free DNA, directly from whole blood samples or plasma. Also included are methods of making and using the nucleic acid extraction materials. One example of a nucleic acid extraction material includes a substrate. This example of the nucleic acid extraction material also includes a polycation bonded to at least a portion of a surface of the substrate. In this example, the polycation consists of a polymer of a quaternized monomer selected from the group consisting of a quaternized 1-vinylimidazole monomer and a quaternized dimethylaminoethyl methacrylate monomer, or a copolymer of a neutral monomer and the quaternized monomer.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: July 19, 2022
    Assignees: Illumina, Inc., Illumina Cambridge Limited
    Inventors: Brian D. Mather, Cyril Delattre, Tarun Kumar Khurana, Yir-Shyuan Wu, Pallavi Daggumati, Behnam Javanmardi, Filiz Gorpe-Yasar, Sebastien Georg Gabriel Ricoult, Xavier von Hatten, Daniel Leonard Fuller
  • Publication number: 20220219170
    Abstract: Described herein are systems and methods for analyzing biological samples. Including a method for processing an analyte, comprising providing a fluidic device comprising the analyte and one or more polymer precursors; selecting a discrete area within said fluidic device; providing an energy source in optical communication with fluidic device; and selectively supplying a unit of energy generated from the energy source to the fluidic device to generate a polymer matrix within the fluidic device, wherein the polymer matrix is within the discrete area or adjacent to the discrete area.
    Type: Application
    Filed: February 10, 2022
    Publication date: July 14, 2022
    Inventors: Tarun Kumar KHURANA, Ali AGAH, Yir-Shyuan WU, Filiz Gorpe YASAR
  • Publication number: 20220195519
    Abstract: In an example, a target material is immobilized on two opposed sequencing surfaces of a flow cell using first and second fluids. The first fluid has a density less than a target material density and the second fluid has a density greater than the target material density; or the second fluid has a density less than the target material density and the first fluid has a density greater than the target material density. The first fluid (including the target material) is introduced into the flow cell, whereby at least some of the target material becomes immobilized by capture sites on one of the sequencing surfaces. The first fluid and non-immobilized target material are removed. The second fluid (including target material) is introduced into the flow cell, whereby at least some of the target material becomes immobilized by capture sites on another of the sequencing surfaces.
    Type: Application
    Filed: December 11, 2020
    Publication date: June 23, 2022
    Inventors: Jeffrey S. Fisher, Tarun Kumar Khurana, Mathieu Lessard-Viger, Clifford Lee Wang, Yir-Shyuan Wu
  • Publication number: 20220184622
    Abstract: In accordance with embodiments herein a method for capturing cells of interest in a digital microfluidic system is provided, comprising utilizing a droplet actuator to transport a sample droplet to a microwell device. The microwell device includes a substrate having a plurality of microwells that open onto a droplet operations surface of the microwell device. The sample droplet includes cells of interest that enter the microwells. The method introduces capture beads to the microwells, and the capture elements are immobilized on the capture beads. The method utilizes the droplet actuator to transport a cell lysis reagent droplet to the microwell device. Portions of the cell lysis reagent droplet enter the microwells and, during an incubation period, cause the cells of interest to release analyte that is captured by the capture elements on the capture beads.
    Type: Application
    Filed: December 17, 2021
    Publication date: June 16, 2022
    Inventors: Arash Jamshidi, Yan-you Lin, Farnaz Absalan, Sarah Stuart, Gordon Cann, Yir-Shyuan Wu, Tarun Khurana, Jeffrey S. Fisher
  • Patent number: 11352668
    Abstract: Implementations of a method for seeding sequence libraries on a surface of a sequencing flow cell that allow for spatial segregation of the libraries on the surface are provided. The spatial segregation can be used to index sequence reads from individual sequencing libraries to increase efficiency of subsequent data analysis. In some examples, hydrogel beads containing encapsulated sequencing libraries are captured on a sequencing flow cell and degraded in the presence of a liquid diffusion barrier to allow for the spatial segregation and seeding of the sequencing libraries on the surface of the flow cell. Additionally, examples of systems, methods and compositions are provided relating to flow cell devices configured for nucleic acid library preparation and single cell sequencing. Some examples include flow cell devices having a hydrogel with genetic material disposed therein, and which is retained within the hydrogel during nucleic acid processing.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: June 7, 2022
    Assignee: ILLUMINA, INC.
    Inventors: Tarun Kumar Khurana, Yir-Shyuan Wu, Xi-Jun Chen, Filiz Gorpe-Yasar, Yan-You Lin, Victoria Popic, Erich B. Jaeger, Mostafa Ronaghi
  • Patent number: 11332788
    Abstract: Embodiments provided herewith are directed to self-assembled methods of preparing a patterned surface for sequencing applications including, for example, a patterned flow cell or a patterned surface for digital fluidic devices. The methods utilize photolithography to create a patterned surface with a plurality of microscale or nanoscale contours, separated by hydrophobic interstitial regions, without the need of oxygen plasma treatment during the photolithography process. In addition, the methods avoid the use of any chemical or mechanical polishing steps after the deposition of a gel material to the contours.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: May 17, 2022
    Assignee: Illumina, Inc.
    Inventors: Yir-Shyuan Wu, Yan-You Lin, M. Shane Bowen, Cyril Delattre, Fabien Abeille, Tarun Khurana, Arnaud Rival, Poorya Sabounchi, Dajun Yuan, Maria Candelaria Rogert Bacigalupo
  • Publication number: 20220143603
    Abstract: A method for making on-flow cell three-dimensional polymer structures includes loading a polymer precursor solution onto a flow cell. The polymer precursor solution includes a monomer, a crosslinker, and a photoinitiator. The flow cell includes at least one channel for receiving the polymer precursor solution. The at least one channel has an upper interior surface and a lower interior surface. The method further includes illuminating the polymer precursor solution through a patterned photomask using a light at a wavelength sufficient to activate the photoinitiator. Activation of the photoinitiator polymerizes at least some of the polymer precursor solution underneath apertures in the patterned photomask and forms three-dimensional polymer structures that extend from the upper interior surface to the lower interior surface of the at least one channel.
    Type: Application
    Filed: November 25, 2020
    Publication date: May 12, 2022
    Inventors: Tarun Kumar Khurana, Elisabet ROSAS-CANYELLES, Yir-shyuan WU, Hayden Black, Mathieu LESSARD-VIGER, Max Zimmerly, Sean Ramirez
  • Patent number: 11318462
    Abstract: An example of a flow cell includes a substrate, which includes nano-depressions defined in a surface of the substrate, and interstitial regions separating the nano-depressions. A hydrophobic material layer has a surface that is at least substantially co-planar with the interstitial regions and is positioned to define a hydrophobic barrier around respective sub-sets of the nano-depressions.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: May 3, 2022
    Assignee: Illumina, Inc.
    Inventors: Tarun Kumar Khurana, Arnaud Rival, Lewis J. Kraft, Steven Barnard, M. Shane Bowen, Xi-Jun Chen, Yir-Shyuan Wu, Jeffrey S. Fisher, Dajun Yuan
  • Publication number: 20220106588
    Abstract: Systems, methods, and compositions provided herein relate to preparation of beads encapsulating long DNA fragments for high-throughput spatial indexing. Some embodiments include preparation of nucleic acid libraries within the bead, wherein the bead includes pores that allow diffusion of reagents while retaining genetic material.
    Type: Application
    Filed: October 21, 2021
    Publication date: April 7, 2022
    Inventors: Yir-Shyuan Wu, Filiz Gorpe-Yasar, Tarun Kumar Khurana, Victoria Popic, Erich B. Jaeger, Mostafa Ronaghi
  • Publication number: 20220080415
    Abstract: An example of a flow cell includes a substrate and a cationic polymeric hydrogel on the substrate. The cationic polymeric hydrogel includes a cationic moiety that is i) integrated into a monomeric unit of an initial polymeric hydrogel or ii) attached to the monomeric unit of the initial polymeric hydrogel through a linker. The flow cell further includes an amplification primer attached to the cationic polymeric hydrogel.
    Type: Application
    Filed: July 22, 2020
    Publication date: March 17, 2022
    Inventors: Yir-Shyuan Wu, Tarun Kumar Khurana, Yasaman Farshchi, Xi-Jun Chen, Bernard Hirschbein
  • Publication number: 20220048004
    Abstract: An example of a flow cell includes a substrate, a plurality of chambers defined on or in the substrate, and a plurality of depressions defined in the substrate and within a perimeter of each of the plurality of chambers. The depressions are separated by interstitial regions. Primers are attached within each of the plurality of depressions, and a capture site is located within each of the plurality of chambers.
    Type: Application
    Filed: October 31, 2021
    Publication date: February 17, 2022
    Inventors: Lewis J. Kraft, Tarun Kumar Khurana, Yir-Shyuan Wu, Xi-Jun Chen, Arnaud Rival, Justin Fullerton, M. Shane Bowen, Hui Han, Jeffrey S. Fisher, Yasaman Farshchi, Mathieu Lessard-Viger
  • Patent number: 11203016
    Abstract: In accordance with embodiments herein a method for capturing cells of interest in a digital microfluidic system is provided, comprising utilizing a droplet actuator to transport a sample droplet to a microwell device. The microwell device includes a substrate having a plurality of microwells that open onto a droplet operations surface of the microwell device. The sample droplet includes cells of interest that enter the microwells. The method introduces capture beads to the microwells, and the capture elements are immobilized on the capture beads. The method utilizes the droplet actuator to transport a cell lysis reagent droplet to the microwell device. Portions of the cell lysis reagent droplet enter the microwells and, during an incubation period, cause the cells of interest to release analyte that is captured by the capture elements on the capture beads.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: December 21, 2021
    Assignee: Illumina, Inc.
    Inventors: Arash Jamshidi, Yan-you Lin, Farnaz Absalan, Sarah Stuart, Gordon Cann, Yir-Shyuan Wu, Tarun Khurana, Jeffrey S Fisher
  • Patent number: 11192083
    Abstract: An example of a flow cell includes a substrate, a plurality of chambers defined on or in the substrate, and a plurality of depressions defined in the substrate and within a perimeter of each of the plurality of chambers. The depressions are separated by interstitial regions. Primers are attached within each of the plurality of depressions, and a capture site is located within each of the plurality of chambers.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: December 7, 2021
    Assignee: Illumina, Inc.
    Inventors: Lewis J. Kraft, Tarun Kumar Khurana, Yir-Shyuan Wu, Xi-Jun Chen, Arnaud Rival, Justin Fullerton, M. Shane Bowen, Hui Han, Jeffrey S. Fisher, Yasaman Farshchi, Mathieu Lessard-Viger
  • Patent number: 11180752
    Abstract: Systems, methods, and compositions provided herein relate to preparation of beads encapsulating long DNA fragments for high-throughput spatial indexing. Some embodiments include preparation of nucleic acid libraries within the bead, wherein the bead includes pores that allow diffusion of reagents while retaining genetic material.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: November 23, 2021
    Assignee: ILLUMINA, INC.
    Inventors: Yir-Shyuan Wu, Filiz Gorpe-Yasar, Tarun Kumar Khurana, Victoria Popic, Erich B. Jaeger, Mostafa Ronaghi