Patents by Inventor Yiyu Feng

Yiyu Feng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11898083
    Abstract: The present disclosure relates to an azobenzene-graphene metal coordination solar photothermal energy storage material based on metal coordination bonds and a preparation method thereof. The method comprises the following steps: preparing reduced graphene oxide; preparing an azobenzene-graphene material; and preparing an azobenzene-graphene metal coordination solar photothermal energy storage material: dispersing the prepared azobenzene-graphene material in DMF, dissolving a certain amount of metal compound in DMF, adding the DMF solution of the metal compound into the DMF solution of the azobenzene-graphene, taking out the precipitate, washing off metal ions which do not participate in coordination, and drying the obtained product to obtain the azobenzene-graphene metal coordination solar photothermal energy storage material.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: February 13, 2024
    Inventors: Yiyu Feng, Hui Wang, Wei Feng, Huitao Yu
  • Publication number: 20220010188
    Abstract: The present disclosure relates to an azobenzene-graphene metal coordination solar photothermal energy storage material based on metal coordination bonds and a preparation method thereof. The method comprises the following steps: preparing reduced graphene oxide; preparing an azobenzene-graphene material; and preparing an azobenzene-graphene metal coordination solar photothermal energy storage material: dispersing the prepared azobenzene-graphene material in DMF, dissolving a certain amount of metal compound in DMF, adding the DMF solution of the metal compound into the DMF solution of the azobenzene-graphene, taking out the precipitate, washing off metal ions which do not participate in coordination, and drying the obtained product to obtain the azobenzene-graphene metal coordination solar photothermal energy storage material.
    Type: Application
    Filed: March 4, 2021
    Publication date: January 13, 2022
    Inventors: Yiyu FENG, Hui WANG, Wei FENG, Huitao YU
  • Patent number: 11189196
    Abstract: Implementations described and claimed herein provide systems and methods for palpation training. In one implementation, a system for medical procedure simulation includes an examination model, a sensor network, and a computing device. The examination model has a plurality of anatomical structure models, and the sensor network has a plurality of sensors. Each of the sensors is associated with one of the plurality of anatomical structure models and configured to capture examination data. The computing device is in communication with the sensor network and configured to generate feedback for an accuracy of a medical examination using the examination data.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: November 30, 2021
    Assignee: Colorado State University Research Foundation
    Inventors: Dean A. Hendrickson, Grahm J. Hendrickson, Jessica L. Sullivan, Anura P. Jayasumana, Bradley S. Evans, Yiyu Feng
  • Patent number: 11167991
    Abstract: Provided is a method for preparing a carbon nanotube/polymer composite material, including: coating a nano-silicon oxide film on the surface of a porous polymer by vacuum coating; depositing a metal catalyst nano-film on the nano-silicon oxide film by vacuum sputtering; growing a carbon nanotube array in situ on the surface of the porous polymer by plasma enhanced chemical vapor deposition to obtain a carbon nanotube/polymer porous material; and impregnating the carbon nanotube/polymer porous material with a polymer and curing to obtain the carbon nanotube/polymer composite material. By using a heat-resistant polymer having a high heat-resistant temperature and a PECVD technique, a carbon nanotube array directly grows in situ on the surface of a polymer at a low temperature, which thereby overcomes the defects of the composites previously prepared, in which carbon nanotubes are difficult to be homogeneously dispersed and the interfacial bonding force in the composites is weak.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: November 9, 2021
    Assignee: Tianjin University
    Inventors: Wei Feng, Fei Zhang, Yiyu Feng, Mengmeng Qin
  • Publication number: 20190322826
    Abstract: Provided is a method for preparing a carbon nanotube/polymer composite material, including: coating a nano-silicon oxide film on the surface of a porous polymer by vacuum coating; depositing a metal catalyst nano-film on the nano-silicon oxide film by vacuum sputtering; growing a carbon nanotube array in situ on the surface of the porous polymer by plasma enhanced chemical vapor deposition to obtain a carbon nanotube/polymer porous material; and impregnating the carbon nanotube/polymer porous material with a polymer and curing to obtain the carbon nanotube/polymer composite material. By using a heat-resistant polymer having a high heat-resistant temperature and a PECVD technique, a carbon nanotube array directly grows in situ on the surface of a polymer at a low temperature, which thereby overcomes the defects of the composites previously prepared, in which carbon nanotubes are difficult to be homogeneously dispersed and the interfacial bonding force in the composites is weak.
    Type: Application
    Filed: September 6, 2018
    Publication date: October 24, 2019
    Inventors: Wei Feng, Fei Zhang, Yiyu Feng, Mengmeng Qin
  • Patent number: 10343921
    Abstract: A method for preparing fluorinated graphene nanoribbons by using fluorine gas as a fluorine source, which includes a step of: fluorinating anhydrous carbon nanotubes in a fluorine gas atmosphere under a pressure of ?0.07˜0 MPa and a temperature of 280˜450° C. to obtain the fluorinated graphene nanoribbons. The method provided is operationally simple, and has a wide variety of raw material sources, low cost, and high production which can reach up to tens of milligrams and even up to hundreds of grams; moreover, the method has simple post-treatment, and can produce fluorinated graphene nanoribbons by a one-step reaction. The prepared fluorinated graphene nanoribbons have very good superhydrophobic properties and chemical stability, and thus can be applied to the anti-icing and other fields, having a very good application prospect.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: July 9, 2019
    Assignee: TIANJIN UNIVERSITY
    Inventors: Wei Feng, Cong Peng, Yiyu Feng
  • Patent number: 10160720
    Abstract: Provided is an azobenzene-based photothermal energy storage molecule represented by Formula I which contains two types of azobenzene unit: two biscarboxyl azobenzene units and one monoamino azobenzene unit. By utilizing the energy difference between the two configurations of the azobenzene units, energy is stored during the transition from trans to cis, and in reverse, energy is released. The carboxyl and amino groups on different azobenzene units can form strong intermolecular and intramolecular hydrogen bonds, which leads to a great improvement in energy density and reversion half-life compared with the traditional azobenzene materials in which a single type of an azobenzene unit is grafted. Moreover, the release of thermal energy can be controlled by light and heating, which is beneficial to fully utilize the solar energy for photothermal energy conversion and storage, and used as a solar thermal fuel to the field of heating technology and new generation of light-driven spacecrafts.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: December 25, 2018
    Assignee: TIANJIN UNIVERSITY
    Inventors: Wei Feng, Fei Zhai, Yiyu Feng, Weixiang Yang, Liqi Dong
  • Publication number: 20170046985
    Abstract: Implementations described and claimed herein provide systems and methods for palpation training. In one implementation, a system for medical procedure simulation includes an examination model, a sensor network, and a computing device. The examination model has a plurality of anatomical structure models, and the sensor network has a plurality of sensors. Each of the sensors is associated with one of the plurality of anatomical structure models and configured to capture examination data. The computing device is in communication with the sensor network and configured to generate feedback for an accuracy of a medical examination using the examination data.
    Type: Application
    Filed: April 24, 2015
    Publication date: February 16, 2017
    Applicant: Colorado State University Research Foundation
    Inventors: Dean A. Hendrickson, Grahm J. Hendrickson, Jessica L. Sullivan, Anura P. Jayasumana, Bradley S. Evans, Yiyu Feng