Patents by Inventor Yizhou Wang

Yizhou Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250106307
    Abstract: A method is disclosed. The method comprises receiving data for a virtual private cloud (VPC), receiving, via a graphical user interface (GUI), a request to access the VPC data and displaying, at the GUI, a resource page providing a filter view of VPC resources including in the VPC data.
    Type: Application
    Filed: September 24, 2024
    Publication date: March 27, 2025
    Applicant: Fortinet, Inc.
    Inventors: Yifeng Wang, Urmila V. Kashyap, Jayati Ambekar, Alexandra Christensen, Joshua L. Vertes, Lindsey A. Poli, Liwei Dai, Matthew M. Park, Yizhou Guo, Sowmya A. Karmali, Yijou Chen
  • Publication number: 20250070791
    Abstract: An input common-mode compensation circuit includes an energy storage module, a switching selection module, and a feedback compensation module. An end of the energy storage module is connected to an input end of the residual amplifier. An input end of the switching selection module is connected to another end of the energy storage module. Input ends of the feedback compensation module are respectively connected to the end of the energy storage module and to a reset voltage of the residual amplifier, and an output end of the feedback compensation module is connected to an output end of the switching selection module. During the reset stage of a residual amplifier, the energy storage module is charged under the action of a reset voltage. During the working stage of the residual amplifier, feedback compensation is performed on the energy storage module through the feedback compensation module.
    Type: Application
    Filed: October 18, 2024
    Publication date: February 27, 2025
    Applicant: Chongqing GigaChip Technology Co., Ltd.
    Inventors: Yizhou Wang, Lu LIU, Daiguo XU, Can ZHU, Dongbing FU, Hequan JIANG, Ruzhang LI, Jianan WANG, Zhou YU, Zhengping ZHANG
  • Publication number: 20240336285
    Abstract: In various examples, systems and methods are disclosed for weighting one or more optional paths based on obstacle avoidance or other safety considerations. In some embodiments, the obstacle avoidance considerations may be computed using a comparison of trajectories representative of safety procedures at present and future projected time steps of an ego-vehicle and other actors to ensure that each actor is capable of implementing their respective safety procedure while avoiding collisions at any point along the trajectory. This comparison may include filtering out a path(s) of an actor at a time step(s)—e.g., using a one-dimensional lookup—based on spatial relationships between the actor and the ego-vehicle at the time step(s). Where a particular path—or point along the path—does not satisfy a collision-free standard, the path may be penalized more negatively with respect to the obstacle avoidance considerations, or may be removed from consideration as a potential path.
    Type: Application
    Filed: June 17, 2024
    Publication date: October 10, 2024
    Inventors: Julia Ng, David Nister, Zhenyi Zhang, Yizhou Wang
  • Patent number: 12077190
    Abstract: In various examples, systems and methods are disclosed for weighting one or more optional paths based on obstacle avoidance or other safety considerations. In some embodiments, the obstacle avoidance considerations may be computed using a comparison of trajectories representative of safety procedures at present and future projected time steps of an ego-vehicle and other actors to ensure that each actor is capable of implementing their respective safety procedure while avoiding collisions at any point along the trajectory. This comparison may include filtering out a path(s) of an actor at a time step(s)—e.g., using a one-dimensional lookup—based on spatial relationships between the actor and the ego-vehicle at the time step(s). Where a particular path—or point along the path—does not satisfy a collision-free standard, the path may be penalized more negatively with respect to the obstacle avoidance considerations, or may be removed from consideration as a potential path.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: September 3, 2024
    Assignee: NVIDIA Corporation
    Inventors: Julia Ng, David Nister, Zhenyi Zhang, Yizhou Wang
  • Publication number: 20240281015
    Abstract: An adaptive current generation circuit includes an inverter drive chain, a frequency divider, a frequency detector, a low-pass filter, a static comparator group, and a controllable current mirror. An input analog signal of the input buffer is converted into a frequency discrimination voltage in a direct current form sequentially through conversion of the inverter drive chain, frequency division of the frequency divider, frequency detection of the frequency detector, and conversion of the low-pass filter. Then the static comparator group performs a plurality of times of comparison to obtain N bits of digital codes. Finally, the controllable current mirror is controlled by using the N bits of digital codes. The controllable current mirror provides a magnitude-adjustable input current for the input buffer under control of the N bits of digital codes. A magnitude of the input current is positively correlated with a frequency of the input analog signal.
    Type: Application
    Filed: April 29, 2024
    Publication date: August 22, 2024
    Applicant: Chongqing GigaChip Technology Co., Ltd.
    Inventors: Yizhou WANG, Lu LIU, Daiguo XU, Can ZHU, Hequan JIANG, Ruzhang LI, Jianan WANG, Guangbing CHEN, Dongbing FU, Zhou YU, Zhengping ZHANG
  • Publication number: 20240239374
    Abstract: Embodiments of the present disclosure relate to behavior planning for autonomous vehicles. The technology described herein selects a preferred trajectory for an autonomous vehicle based on an evaluation of multiple hypothetical trajectories by different components within a planning system. The various components provide an optimization score for each trajectory according to the priorities of the component and scores from multiple components may form a final optimization score. This scoring system allows the competing priorities (e.g., comfort, minimal travel time, fuel economy) of different components to be considered together. In examples, the trajectory with the best combined score may be selected for implementation. As such, an iterative approach that evaluates various factors may be used to identify an optimal or preferred trajectory for an autonomous vehicle when navigating an environment.
    Type: Application
    Filed: March 28, 2024
    Publication date: July 18, 2024
    Inventors: David Nister, Yizhou Wang, Julia Ng, Rotem Aviv, Seungho Lee, Joshua John Bialkowski, Hon Leung Lee, Hermes Lanker, Raul Correal Tezanos, Zhenyi Zhang, Nikolai Smolyanskiy, Alexey Kamenev, Ollin Boer Bohan, Anton Vorontsov, Miguel Sainz Serra, Birgit Henke
  • Publication number: 20240217557
    Abstract: In various examples, a yield scenario may be identified for a first vehicle. A wait element is received that encodes a first path for the first vehicle to traverse a yield area and a second path for a second vehicle to traverse the yield area. The first path is employed to determine a first trajectory in the yield area for the first vehicle based at least on a first location of the first vehicle at a time and the second path is employed to determine a second trajectory in the yield area for the second vehicle based at least on a second location of the second vehicle at the time. To operate the first vehicle in accordance with a wait state, it may be determined whether there is a conflict between the first trajectory and the second trajectory, where the wait state defines a yielding behavior for the first vehicle.
    Type: Application
    Filed: March 12, 2024
    Publication date: July 4, 2024
    Inventors: Fangkai Yang, David Nister, Yizhou Wang, Rotem Aviv, Julia Ng, Birgit Henke, Hon Leung Lee, Yunfei Shi
  • Publication number: 20240223203
    Abstract: A circuit for channel randomization based on time-interleaved ADC includes: a channel selection module for outputting M clock reception control signals and encoded N data reception control signals based on a main clock and a generated random number; a multi-phase clock distribution module for generating N multi-phase clocks according to a sampling main clock, redistributing the multi-phase clocks according to the clock reception control signals, and outputting M redistributed clock signals; a time-interleaved ADC module for outputting M output data and a corresponding number of channel quantization completion signals according to the redistributed clock signals; an adjustable delay module for setting a delay length for the data reception control signals; and a timing distribution control module for controlling, according to delayed data reception control signals and the channel quantization completion signals, the output data to be output sequentially in chronological order.
    Type: Application
    Filed: March 12, 2024
    Publication date: July 4, 2024
    Applicant: Chongqing GigaChip Technology Co., Ltd.
    Inventors: Yizhou WANG, Lu LIU, Daiguo XU, Can ZHU, Hequan JIANG, Ruzhang LI, Jianan WANG, Guangbing CHEN, Dongbing FU, Zhou YU, Zhengping ZHANG
  • Publication number: 20240174219
    Abstract: In various examples, a current claimed set of points representative of a volume in an environment occupied by a vehicle at a time may be determined. A vehicle-occupied trajectory and at least one object-occupied trajectory may be generated at the time. An intersection between the vehicle-occupied trajectory and an object-occupied trajectory may be determined based at least in part on comparing the vehicle-occupied trajectory to the object-occupied trajectory. Based on the intersection, the vehicle may then execute the first safety procedure or an alternative procedure that, when implemented by the vehicle when the object implements the second safety procedure, is determined to have a lesser likelihood of incurring a collision between the vehicle and the object than the first safety procedure.
    Type: Application
    Filed: February 5, 2024
    Publication date: May 30, 2024
    Inventors: David Nister, Hon-Leung Lee, Julia Ng, Yizhou Wang
  • Publication number: 20240159808
    Abstract: An anechoic chamber and a construction method thereof are provided, the anechoic chamber includes a top surface, being a polygon; trapezoid surfaces, corresponding to edges of top surface, upper edge lengths of trapezoid surface being equal to edge lengths of top surface, trapezoid surfaces being connected to edges of top surface through the upper edges, the trapezoid surfaces being sequentially connected along a circumferential direction of top surface, and being at angle to the top surface; rectangular surfaces, corresponding to the trapezoid surfaces, upper edge lengths of rectangular surface being equal to lower edge lengths of trapezoid surface, rectangular surfaces being connected to the trapezoid surfaces through the upper edges, the rectangular surfaces being sequentially connected along a circumferential direction of the lower edges of trapezoid surfaces, and being perpendicular to the top surface; and an absorbing material, disposed on the top surface, the trapezoid surfaces and the rectangular surf
    Type: Application
    Filed: November 7, 2023
    Publication date: May 16, 2024
    Inventors: Zibin He, Deqiang Song, Hao Xing, Huiru Zhang, Shujuan Song, Hao Chai, Zheng Li, Quan Chen, Yizhou Wang, Wenyu Cheng
  • Patent number: 11981349
    Abstract: Embodiments of the present disclosure relate to behavior planning for autonomous vehicles. The technology described herein selects a preferred trajectory for an autonomous vehicle based on an evaluation of multiple hypothetical trajectories by different components within a planning system. The various components provide an optimization score for each trajectory according to the priorities of the component and scores from multiple components may form a final optimization score. This scoring system allows the competing priorities (e.g., comfort, minimal travel time, fuel economy) of different components to be considered together. In examples, the trajectory with the best combined score may be selected for implementation. As such, an iterative approach that evaluates various factors may be used to identify an optimal or preferred trajectory for an autonomous vehicle when navigating an environment.
    Type: Grant
    Filed: February 18, 2021
    Date of Patent: May 14, 2024
    Assignee: NVIDIA Corporation
    Inventors: David Nister, Yizhou Wang, Julia Ng, Rotem Aviv, Seungho Lee, Joshua John Bialkowski, Hon Leung Lee, Hermes Lanker, Raul Correal Tezanos, Zhenyi Zhang, Nikolai Smolyanskiy, Alexey Kamenev, Ollin Boer Bohan, Anton Vorontsov, Miguel Sainz Serra, Birgit Henke
  • Patent number: 11966228
    Abstract: In various examples, a current claimed set of points representative of a volume in an environment occupied by a vehicle at a time may be determined. A vehicle-occupied trajectory and at least one object-occupied trajectory may be generated at the time. An intersection between the vehicle-occupied trajectory and an object-occupied trajectory may be determined based at least in part on comparing the vehicle-occupied trajectory to the object-occupied trajectory. Based on the intersection, the vehicle may then execute the first safety procedure or an alternative procedure that, when implemented by the vehicle when the object implements the second safety procedure, is determined to have a lesser likelihood of incurring a collision between the vehicle and the object than the first safety procedure.
    Type: Grant
    Filed: December 16, 2022
    Date of Patent: April 23, 2024
    Assignee: NVIDIA Corporation
    Inventors: David Nister, Hon-Leung Lee, Julia Ng, Yizhou Wang
  • Patent number: 11959952
    Abstract: An anechoic chamber and a construction method thereof are provided, the anechoic chamber includes a top surface, being a polygon; trapezoid surfaces, corresponding to edges of top surface, upper edge lengths of trapezoid surface being equal to edge lengths of top surface, trapezoid surfaces being connected to edges of top surface through the upper edges, the trapezoid surfaces being sequentially connected along a circumferential direction of top surface, and being at angle to the top surface; rectangular surfaces, corresponding to the trapezoid surfaces, upper edge lengths of rectangular surface being equal to lower edge lengths of trapezoid surface, rectangular surfaces being connected to the trapezoid surfaces through the upper edges, the rectangular surfaces being sequentially connected along a circumferential direction of the lower edges of trapezoid surfaces, and being perpendicular to the top surface; and an absorbing material, disposed on the top surface, the trapezoid surfaces and the rectangular surf
    Type: Grant
    Filed: November 7, 2023
    Date of Patent: April 16, 2024
    Assignee: BEIJING ORIENT INSTITUTE OF MEASUREMENT AND TEST
    Inventors: Zibin He, Deqiang Song, Hao Xing, Huiru Zhang, Shujuan Song, Hao Chai, Zheng Li, Quan Chen, Yizhou Wang, Wenyu Cheng
  • Publication number: 20240116538
    Abstract: In various examples, sensor data may be collected using one or more sensors of an ego-vehicle to generate a representation of an environment surrounding the ego-vehicle. The representation may include lanes of the roadway and object locations within the lanes. The representation of the environment may be provided as input to a longitudinal speed profile identifier, which may project a plurality of longitudinal speed profile candidates onto a target lane. Each of the plurality of longitudinal speed profiles candidates may be evaluated one or more times based on one or more sets of criteria. Using scores from the evaluation, a target gap and a particular longitudinal speed profile from the longitudinal speed profile candidates may be selected. Once the longitudinal speed profile for a target gap has been determined, the system may execute a lane change maneuver according to the longitudinal speed profile.
    Type: Application
    Filed: December 19, 2023
    Publication date: April 11, 2024
    Inventors: Zhenyi Zhang, Yizhou Wang, David Nister, Neda Cvijetic
  • Patent number: 11926346
    Abstract: In various examples, a yield scenario may be identified for a first vehicle. A wait element is received that encodes a first path for the first vehicle to traverse a yield area and a second path for a second vehicle to traverse the yield area. The first path is employed to determine a first trajectory in the yield area for the first vehicle based at least on a first location of the first vehicle at a time and the second path is employed to determine a second trajectory in the yield area for the second vehicle based at least on a second location of the second vehicle at the time. To operate the first vehicle in accordance with a wait state, it may be determined whether there is a conflict between the first trajectory and the second trajectory, where the wait state defines a yielding behavior for the first vehicle.
    Type: Grant
    Filed: August 5, 2021
    Date of Patent: March 12, 2024
    Assignee: NVIDIA Corporation
    Inventors: Fangkai Yang, David Nister, Yizhou Wang, Rotem Aviv, Julia Ng, Birgit Henke, Hon Leung Lee, Yunfei Shi
  • Publication number: 20240059285
    Abstract: In various examples, techniques for using future trajectory predictions for adaptive cruise control (ACC) are described. For instance, a vehicle may determine a future path(s) of the vehicle and a future path(s) of an object(s). The vehicle may then use a speed profile(s) and the future path(s) to determine a trajectory(ies) for the vehicle. The vehicle may then select a trajectory, such as based on the future path(s) of the object(s). Based on the trajectory, ACC of the vehicle may cause the vehicle to navigate at a speed or a velocity. This way, the vehicle is able to continue using ACC even when the driver makes a maneuver(s) or the system determined to make a maneuver, such as switching lanes or choosing a lane when a road splits.
    Type: Application
    Filed: August 19, 2022
    Publication date: February 22, 2024
    Inventors: Julia Ng, Jian Wei Leong, Nikolai Smolyanskiy, Yizhou Wang, Fangkai Yang, Nianfeng Wan, Chang Liu
  • Publication number: 20240053749
    Abstract: To determine a path through a pose configuration space, trajectories of poses may be evaluated in parallel based at least on translating the trajectories along at least one axis of the pose configuration space (e.g., an orientation axis). A trajectory may include at least a portion of a turn having a fixed turn radius. Turns or turn portions that have the same turn radius and initial orientation can be translatively shifted along and processed in parallel along the orientation axis as they are translated copies of each other, but with different starting points. Trajectories may be evaluated based at least on processing variables used to evaluate reachability as bit vectors with threads effectively performing large vector operations in synchronization. A parallel reduction pattern may be used to account for dependencies that may exist between sections of a trajectory for evaluating reachability, allowing for the sections to be processed in parallel.
    Type: Application
    Filed: October 25, 2023
    Publication date: February 15, 2024
    Inventors: David Nister, Yizhou Wang, Jaikrishna Soundararajan, Sachit Kadle
  • Patent number: 11884294
    Abstract: In various examples, sensor data may be collected using one or more sensors of an ego-vehicle to generate a representation of an environment surrounding the ego-vehicle. The representation may include lanes of the roadway and object locations within the lanes. The representation of the environment may be provided as input to a longitudinal speed profile identifier, which may project a plurality of longitudinal speed profile candidates onto a target lane. Each of the plurality of longitudinal speed profiles candidates may be evaluated one or more times based on one or more sets of criteria. Using scores from the evaluation, a target gap and a particular longitudinal speed profile from the longitudinal speed profile candidates may be selected. Once the longitudinal speed profile for a target gap has been determined, the system may execute a lane change maneuver according to the longitudinal speed profile.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: January 30, 2024
    Assignee: NVIDIA Corporation
    Inventors: Zhenyi Zhang, Yizhou Wang, David Nister, Neda Cvijetic
  • Patent number: 11860628
    Abstract: To determine a path through a pose configuration space, trajectories of poses may be evaluated in parallel based at least on translating the trajectories along at least one axis of the pose configuration space (e.g., an orientation axis). A trajectory may include at least a portion of a turn having a fixed turn radius. Turns or turn portions that have the same turn radius and initial orientation can be translatively shifted along and processed in parallel along the orientation axis as they are translated copies of each other, but with different starting points. Trajectories may be evaluated based at least on processing variables used to evaluate reachability as bit vectors with threads effectively performing large vector operations in synchronization. A parallel reduction pattern may be used to account for dependencies that may exist between sections of a trajectory for evaluating reachability, allowing for the sections to be processed in parallel.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: January 2, 2024
    Assignee: NVIDIA Corporation
    Inventors: David Nister, Yizhou Wang, Jaikrishna Soundararajan, Sachit Kadle
  • Patent number: 11836858
    Abstract: Systems and methods allow for incident data collection and management system based on unmanned aerial vehicles (UAVs), that is, drones to help accelerate the data collection and analytics, information dissemination, and decision support at incident sites. The system architecture may include onsite, server, and offline components including flight planning subsystem, flight execution and mission control subsystem, information dissemination subsystem to travelers and traveler information services, the interface with traffic management center, and the data analytic, visualization, and training subsystems. Other embodiments include the video-based 3D incident site reconstruction methods, site positioning and scaling methods with pre-collected static background infrastructure data, data management and user charging methods, and training methods with the generated 3D model.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: December 5, 2023
    Assignee: Rutgers, The State University of New Jersey
    Inventors: Jing Jin, Bobby Ouyang, Seyedamirali Mostafavizadeh Ardestani, Yizhou Wang, Xiaowen Jiang, Tianya Zhang