Patents by Inventor YOAV PINSKY

YOAV PINSKY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230277258
    Abstract: A system and method for ensuring safe and tolerable insertion of a needle into a subject's body according to a preplanned or continuously monitored sequence of insertion steps. The system comprises a gripping device for gripping the needle in order to perform robotic insertion steps, yet for releasing the grip between such insertion steps, until the next insertion step is initiated. Thereby, the robot has full control of the needle during insertion steps, but does not constrain the needle between insertions, such that movement of the subject can cause neither damage nor discomfort. The gripping and insertion steps may be coordinated to keep in synchronization with the subject's breathing cycles, such that the insertion steps may be performed in the same segment of each cycle of motion of the subject's chest. The gripper can either fully disconnect from the needle, or can partially disconnect but constrain motion within limits.
    Type: Application
    Filed: May 10, 2023
    Publication date: September 7, 2023
    Inventors: Daniel GLOZMAN, Gonen DASKAL, Moshe SHOHAM, Michael ARAD, Yoav PINSKY
  • Publication number: 20230259248
    Abstract: A virtual endoscopic view shows a surgical area and surrounding anatomy and may also show a position of a surgical instrument in use during a surgical procedure, allowing a surgeon to virtually view the surgical area when direct viewing or actual endoscopic views are incomplete, obstructed, or otherwise unavailable or undesirable. In order to render the endoscopic view, an IGS navigation system may be configured with an observer point and an observer orientation within 3-D space based upon user inputs. A user interface for defining these points allows a user to view a virtual endoscopic preview in real-time while providing inputs, thus improving the likelihood that the resulting virtual endoscopic view is as desired by the user; and reducing time spent redefining and reconfiguring the virtual endoscopic view. The virtual endoscopic preview may provide combinations of static and dynamic images to illustrate the spatial relationship of the provided inputs.
    Type: Application
    Filed: April 24, 2023
    Publication date: August 17, 2023
    Inventors: Jetmir Palushi, Henry F. Salazar, Jordan R. Trott, Moran Levi, Itamar Bustan, Yoav Pinsky, Noam Racheli, Athanasios Papadakis
  • Patent number: 11684435
    Abstract: A system and method for ensuring safe and tolerable insertion of a needle into a subject's body according to a preplanned or continuously monitored sequence of insertion steps. The system comprises a gripping device for gripping the needle in order to perform robotic insertion steps, yet for releasing the grip between such insertion steps, until the next insertion step is initiated. Thereby, the robot has full control of the needle during insertion steps, but does not constrain the needle between insertions, such that movement of the subject can cause neither damage nor discomfort. The gripping and insertion steps may be coordinated to keep in synchronization with the subject's breathing cycles, such that the insertion steps may be performed in the same segment of each cycle of motion of the subject's chest. The gripper can either fully disconnect from the needle, or can partially disconnect but constrain motion within limits.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: June 27, 2023
    Assignee: TECHNION RESEARCH & DEVELOPMENT FOUNDATION LIMITED
    Inventors: Daniel Glozman, Gonen Daskal, Moshe Shoham, Michael Arad, Yoav Pinsky
  • Patent number: 11666352
    Abstract: Apparatus, including a probe having a distal end insertable into a nasal sinus of a human patient, and a location sensor positioned within the distal end. A sinuplasty balloon is positioned on the distal end at a selected opening of the nasal sinus. A processor receives first signals from the location sensor while the distal end is inserted into the nasal sinus and prior to positioning of the balloon at the selected opening, and generates a first map of the sinus. The processor inflates the balloon when it is at the selected opening, so as to enlarge the selected opening, and subsequently deflates the balloon. The processor then receives second signals from the location sensor and generates therefrom a second map of the sinus. The processor registers the first map with the second map and generates from the registered maps a numerical increase in size of the selected opening.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: June 6, 2023
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Zvi Dekel, Akram Zoabi, Yoav Pinsky, Noam Racheli, Itamar Bustan
  • Patent number: 11656735
    Abstract: A virtual endoscopic view shows a surgical area and surrounding anatomy and may also show a position of a surgical instrument in use during a surgical procedure, allowing a surgeon to virtually view the surgical area when direct viewing or actual endoscopic views are incomplete, obstructed, or otherwise unavailable or undesirable. In order to render the endoscopic view, an IGS navigation system may be configured with an observer point and an observer orientation within 3-D space based upon user inputs. A user interface for defining these points allows a user to view a virtual endoscopic preview in real-time while providing inputs, thus improving the likelihood that the resulting virtual endoscopic view is as desired by the user; and reducing time spent redefining and reconfiguring the virtual endoscopic view. The virtual endoscopic preview may provide combinations of static and dynamic images to illustrate the spatial relationship of the provided inputs.
    Type: Grant
    Filed: November 17, 2021
    Date of Patent: May 23, 2023
    Assignees: Acclarent, Inc., Biosense Webster (Israel) Ltd.
    Inventors: Jetmir Palushi, Henry F. Salazar, Jordan R. Trott, Moran Levi, Itamar Bustan, Yoav Pinsky, Noam Racheli, Athanasios Papadakis
  • Patent number: 11504023
    Abstract: A calibration method includes receiving magnetic field values, which are generated by a plurality of real magnetic transmitters and are measured at multiple positions on a grid in a region containing a magnetic field perturbing element. Approximate locations of the real magnetic transmitters are received. Using the approximate locations, a respective plurality of imaginary magnetic sources is characterized inside the field perturbing element. Using the measured magnetic field values, the approximate locations, and the characterized imaginary sources, there are iteratively calculated (i) actual locations of the real and imaginary magnetic sources in the region, and (ii) modeled magnetic field values that would result from the real and imaginary magnetic sources at the actual locations. Using the calculated locations, and the modeled magnetic field values at the multiple positions on the grid, a magnetic field calibration function is derived for the region.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: November 22, 2022
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Helen Wolfson, Avram Dan Montag, Meir Bar-Tal, Yoav Pinsky, Noam Racheli
  • Publication number: 20220280251
    Abstract: A method and apparatus for steering of a flexible needle into tissue using a steering robotic platform for manipulation of the needle shaft, and by use of a semi-active arm for locating and orienting of the steering robot on the patient's body. As opposed to other steering methods, the robot does not hold the base of the needle, which is its proximal region, but rather grips the shaft of the needle by means of a manipulatable needle gripping device, near its distal end. The needle gripper attached to the robotic platform may be equipped with a traction assembly to provide motion to the needle in its longitudinal direction, such that it co-ordinates the entry of the needle with the desired entry angle. The gripping of the needle at its distal end, close to its insertion point, provides the needle manipulator with a low profile, with concomitant advantages.
    Type: Application
    Filed: May 24, 2022
    Publication date: September 8, 2022
    Inventors: Daniel GLOZMAN, Gonen DASKAL, Moshe SHOHAM, Michael ARAD, Yoav PINSKY
  • Publication number: 20220238203
    Abstract: A method is provided. The method is implemented by an interface engine stored as processor executable code on a memory coupled to a processor. The method includes aggregating data from completed cases, analyzing the data for accuracy, consistency, or error within or across the one completed cases, and generating one or more grades based on the analysis of the data. Note that the data includes location information and registration information, and the completed cases include at least one ear, nose, and throat navigation and registration procedure.
    Type: Application
    Filed: January 26, 2021
    Publication date: July 28, 2022
    Applicant: Biosense Webster (Israel) Ltd.
    Inventors: Helen Wolfson, Iris Segal, Yoav Pinsky, George Gusein, Uriel Hod
  • Patent number: 11369444
    Abstract: A method and apparatus for steering of a flexible needle into tissue using a steering robotic platform for manipulation of the needle shaft, and by use of a semi-active arm for locating and orienting of the steering robot on the patient's body. As opposed to other steering methods, the robot does not hold the base of the needle, which is its proximal region, but rather grips the shaft of the needle by means of a manipulatable needle gripping device, near its distal end. The needle gripper attached to the robotic platform may be equipped with a traction assembly to provide motion to the needle in its longitudinal direction, such that it co-ordinates the entry of the needle with the desired entry angle. The gripping of the needle at its distal end, close to its insertion point, provides the needle manipulator with a low profile, with concomitant advantages.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: June 28, 2022
    Assignee: TECHNION RESEARCH & DEVELOPMENT FOUNDATION LIMITED
    Inventors: Daniel Glozman, Gonen Daskal, Moshe Shoham, Michael Arad, Yoav Pinsky
  • Publication number: 20220137788
    Abstract: A virtual endoscopic view shows a surgical area and surrounding anatomy and may also show a position of a surgical instrument in use during a surgical procedure, allowing a surgeon to virtually view the surgical area when direct viewing or actual endoscopic views are incomplete, obstructed, or otherwise unavailable or undesirable. In order to render the endoscopic view, an IGS navigation system may be configured with an observer point and an observer orientation within 3-D space based upon user inputs. A user interface for defining these points allows a user to view a virtual endoscopic preview in real-time while providing inputs, thus improving the likelihood that the resulting virtual endoscopic view is as desired by the user; and reducing time spent redefining and reconfiguring the virtual endoscopic view. The virtual endoscopic preview may provide combinations of static and dynamic images to illustrate the spatial relationship of the provided inputs.
    Type: Application
    Filed: November 17, 2021
    Publication date: May 5, 2022
    Inventors: Jetmir Palushi, Henry F. Salazar, Jordan R. Trott, Moran Levi, Itamar Bustan, Yoav Pinsky, Noam Racheli, Athanasios Papadakis
  • Publication number: 20220110692
    Abstract: Apparatus and methods are provided for receiving an image of a portion of a body anatomy of a patient, registering the image to patient coordinates, inserting a probe into the portion of the body anatomy, the probe comprising a tool tip configured to identify the position of the probe relative to the registered image, performing the procedure, the procedure comprising navigating the probe within the portion of the body anatomy, generating a procedure report comprising one or more components related to the procedure, the one or more components comprising a visual indication of areas of the portion of the body anatomy navigated to by the probe, and providing the procedure report in a selected format upon termination of the procedure.
    Type: Application
    Filed: October 12, 2020
    Publication date: April 14, 2022
    Applicant: Biosense Webster (Israel) Ltd.
    Inventors: Helen Wolfson, Iris Segal, Yoav Pinsky, George Gusein, Uriel Hod
  • Publication number: 20210401500
    Abstract: A method includes receiving a medical imaging scan of at least a part of a body of a patient. Voxels of the scan are identified, that correspond to regions in the body that are traversable by a probe inserted therein. The scan is displayed on a screen and selected termination and start points for the probe are marked thereon. Using a processor, a backward path is found from the termination point to the start point comprising a connected set of the identified voxels. The backward path is visualized on the screen in association with the scan.
    Type: Application
    Filed: June 29, 2020
    Publication date: December 30, 2021
    Inventors: Yair Palti, Vadim Gliner, Yoav Pinsky
  • Patent number: 11204677
    Abstract: A virtual endoscopic view shows a surgical area and surrounding anatomy and may also show a position of a surgical instrument in use during a surgical procedure, allowing a surgeon to virtually view the surgical area when direct viewing or actual endoscopic views are incomplete, obstructed, or otherwise unavailable or undesirable. In order to render the endoscopic view, an IGS navigation system may be configured with an observer point and an observer orientation within 3-D space based upon user inputs. A user interface for defining these points allows a user to view a virtual endoscopic preview in real-time while providing inputs, thus improving the likelihood that the resulting virtual endoscopic view is as desired by the user; and reducing time spent redefining and reconfiguring the virtual endoscopic view. The virtual endoscopic preview may provide combinations of static and dynamic images to illustrate the spatial relationship of the provided inputs.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: December 21, 2021
    Assignees: Acclarent, Inc., Biosense Webster (Israel) Ltd.
    Inventors: Jetmir Palushi, Henry F. Salazar, Jordan R. Trott, Moran Levi, Itamar Bustan, Yoav Pinsky, Noam Racheli, Athanasios Papadakis
  • Patent number: 11123144
    Abstract: Apparatus, including a patient tracker, attached to a subject, having magnetic field sensors and optical landmarks with known spatial relationships to each other. A camera acquires a 3D optical image, in a first frame of reference (FOR), of the subject's face. A magnetic radiator assembly generates magnetic fields at the subject's head, thereby defining a second FOR. A processor: processes field sensor signals to acquire location coordinates of the sensors in the second FOR; segments a tomographic image of the subject, having a third FOR, to identify the subject's face in the third FOR; computes a first transformation between the third and first FORs to map the tomographic face image to the 3D optical image; maps the optical landmarks to the third FOR; maps the respective location coordinates of the sensors to the first FOR; and computes a second transformation between the second FOR and the third FOR.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: September 21, 2021
    Assignees: Biosense Webster (Israel) Ltd., Acclarent, Inc.
    Inventors: Itamar Bustan, Ehsan Shameli, Moran Levi, Itzhak Fang, Uriel Hod, Babak Ebrahimi, Yoav Pinsky, Fatemeh Akbarian, Noam Racheli
  • Patent number: 11116420
    Abstract: Physicians performing invasive procedures utilize instruments inserted into a human body to perform the procedures. Such procedures typically involve actions to be performed on specific targeted anatomical structures. During the procedure, nearby anatomical structures unrelated to the procedure should generally be avoided. A system and techniques are provided herein for monitoring the position of such unrelated nearby anatomical structures relative to one or more surgical instruments. The system emits a warning to a human operator such as a surgeon if one of the instruments is too close to a monitored anatomical structure.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: September 14, 2021
    Assignees: BIOSENSE WEBSTER (ISRAEL) LTD., ACCLARENT, INC.
    Inventors: Itzhak Fang, Noam Rachli, Yoav Pinsky, Itamar Bustan, Jetmir Palushi, Zvi Dekel
  • Patent number: 11065064
    Abstract: An apparatus, including a magnetic field generator, a first magnetic field sensor configured for attachment to a proximal end of a surgical tool configured for insertion into a body, and a calibration device that includes a second magnetic field sensor and a proximity sensor, wherein the field sensors generate respective location signals responsive to a magnetic field emanating from the generator and traversing the field sensors. The apparatus includes a control unit, which receives the signals from all the sensors, extracts respective location and orientation coordinates of the field sensors based on the signals, computes a conversion relation between the coordinates of the first sensor and a distal end of the tool that is brought into contact with the calibration device, and subsequently applies the conversion relation, together with the coordinates of the first sensor, in providing a visual indication of a location of the distal end inside the body.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: July 20, 2021
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Yoav Pinsky, Akram Zoabi, Itamar Bustan, Michal Alroy Levy
  • Patent number: 11058497
    Abstract: Physicians performing invasive procedures require accuracy and precision when working with surgical tools. Surgical procedures are increasingly becoming minimally invasive, with physicians operating using cameras to view the surgery site and directing their tools through oculars or video displays. Ideally, the physician should be able to perform the invasive procedure while simultaneously observing both the real-time image of the patient and additional data critical for his medical decisions about the manipulation of the surgical tool and the next surgical step. The augmented reality navigation system of the present disclosure provides tool location visibility for invasive procedures through the use of location sensors included on a camera and/or on the tools used during a procedure. A location tracking system determines and monitors the locations of the tools and camera based on the characteristics of signals detected by the sensors and displays informational overlays on images obtained with a camera.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: July 13, 2021
    Assignees: Biosense Webster (Israel) Ltd., Acclarent, Inc.
    Inventors: Andres Claudio Altmann, Assaf Govari, Vadim Gliner, Itzhak Fang, Noam Rachli, Yoav Pinsky, Itamar Bustan, Jetmir Palushi, Zvi Dekel
  • Publication number: 20210177298
    Abstract: A calibration method includes receiving magnetic field values, which are generated by a plurality of real magnetic transmitters and are measured at multiple positions on a grid in a region containing a magnetic field perturbing element. Approximate locations of the real magnetic transmitters are received. Using the approximate locations, a respective plurality of imaginary magnetic sources is characterized inside the field perturbing element. Using the measured magnetic field values, the approximate locations, and the characterized imaginary sources, there are iteratively calculated (i) actual locations of the real and imaginary magnetic sources in the region, and (ii) modeled magnetic field values that would result from the real and imaginary magnetic sources at the actual locations. Using the calculated locations, and the modeled magnetic field values at the multiple positions on the grid, a magnetic field calibration function is derived for the region.
    Type: Application
    Filed: December 16, 2019
    Publication date: June 17, 2021
    Inventors: Helen Wolfson, Avram Dan Montag, Meir Bar-Tal, Yoav Pinsky, Noam Racheli
  • Publication number: 20210068855
    Abstract: Apparatus, including a probe having a distal end insertable into a nasal sinus of a human patient, and a location sensor positioned within the distal end. A sinuplasty balloon is positioned on the distal end at a selected opening of the nasal sinus. A processor receives first signals from the location sensor while the distal end is inserted into the nasal sinus and prior to positioning of the balloon at the selected opening, and generates a first map of the sinus. The processor inflates the balloon when it is at the selected opening, so as to enlarge the selected opening, and subsequently deflates the balloon. The processor then receives second signals from the location sensor and generates therefrom a second map of the sinus. The processor registers the first map with the second map and generates from the registered maps a numerical increase in size of the selected opening.
    Type: Application
    Filed: October 5, 2020
    Publication date: March 11, 2021
    Inventors: Zvi Dekel, Akram Zoabi, Yoav Pinsky, Noam Racheli, Itamar Bustan
  • Patent number: 10799256
    Abstract: Apparatus, including a probe having a distal end insertable into a nasal sinus of a human patient, and a location sensor positioned within the distal end. A sinuplasty balloon is positioned on the distal end at a selected opening of the nasal sinus. A processor receives first signals from the location sensor while the distal end is inserted into the nasal sinus and prior to positioning of the balloon at the selected opening, and generates a first map of the sinus. The processor inflates the balloon when it is at the selected opening, so as to enlarge the selected opening, and subsequently deflates the balloon. The processor then receives second signals from the location sensor and generates therefrom a second map of the sinus. The processor registers the first map with the second map and generates from the registered maps a numerical increase in size of the selected opening.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: October 13, 2020
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Zvi Dekel, Akram Zoabi, Yoav Pinsky, Noam Racheli, Itamar Bustan