Patents by Inventor Yogendra M. Gupta

Yogendra M. Gupta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11835323
    Abstract: Munitions structures comprising one or more high strength reactive alloys, in particular reactive bulk metallic glasses, have significant amounts of inherent chemical energy. This energy may be discharged by subjection of the munitions structure to rapid impulsive loading and fragmentation in the presence of oxygen and/or nitrogen. A munitions structure can be configured in both large and small penetrators, e.g. warheads and bullets, with increased lethality. The lethality of these munitions structures is augmented by means of rapidly and simultaneously imparting both mechanical energy (kinetic energy through impact and fragmentation) and chemical energy (blast and/or fireball) to a target. A high-strength reactive alloy can substitute at least in part one or both of explosives and inert structural materials in conventional munitions systems to improve performance and reduce parasitic weight of structural casing.
    Type: Grant
    Filed: March 4, 2022
    Date of Patent: December 5, 2023
    Assignee: Washington State University
    Inventors: Yogendra M. Gupta, Atakan Peker
  • Publication number: 20220357137
    Abstract: Munitions structures comprising one or more high strength reactive alloys, in particular reactive bulk metallic glasses, have significant amounts of inherent chemical energy. This energy may be discharged by subjection of the munitions structure to rapid impulsive loading and fragmentation in the presence of oxygen and/or nitrogen. A munitions structure can be configured in both large and small penetrators, e.g. warheads and bullets, with increased lethality. The lethality of these munitions structures is augmented by means of rapidly and simultaneously imparting both mechanical energy (kinetic energy through impact and fragmentation) and chemical energy (blast and/or fireball) to a target. A high-strength reactive alloy can substitute at least in part one or both of explosives and inert structural materials in conventional munitions systems to improve performance and reduce parasitic weight of structural casing.
    Type: Application
    Filed: March 4, 2022
    Publication date: November 10, 2022
    Inventors: Yogendra M. Gupta, Atakan Peker
  • Publication number: 20200378735
    Abstract: Munitions structures comprising one or more high strength reactive alloys, in particular reactive bulk metallic glasses, have significant amounts of inherent chemical energy. This energy may be discharged by subjection of the munitions structure to rapid impulsive loading and fragmentation in the presence of oxygen and/or nitrogen. A munitions structure can be configured in both large and small penetrators, e.g. warheads and bullets, with increased lethality. The lethality of these munitions structures is augmented by means of rapidly and simultaneously imparting both mechanical energy (kinetic energy through impact and fragmentation) and chemical energy (blast and/or fireball) to a target. A high-strength reactive alloy can substitute at least in part one or both of explosives and inert structural materials in conventional munitions systems to improve performance and reduce parasitic weight of structural casing.
    Type: Application
    Filed: March 10, 2020
    Publication date: December 3, 2020
    Inventors: Yogendra M, Gupta, Atakan Peker
  • Patent number: 10591264
    Abstract: A process for producing a munitions structure includes combining two or more transition metals including one or more of Zr, Hf, Ti, Ta, or Nb, and one or more other elements as alloying additions. The process further includes heating and fusing together the two or more transition metals and the one or more alloying additions to form a homogenous molten alloy. The homogenous molten alloy is cooled in a metallic mold to form a solid object with a desired shape for the munitions structure.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: March 17, 2020
    Assignee: Washington State University
    Inventors: Yogendra M Gupta, Atakan Peker
  • Publication number: 20200025540
    Abstract: A process for producing a munitions structure includes combining two or more transition metals including one or more of Zr, Hf, Ti, Ta, or Nb, and one or more other elements as alloying additions. The process further includes heating and fusing together the two or more transition metals and the one or more alloying additions to form a homogenous molten alloy. The homogenous molten alloy is cooled in a metallic mold to form a solid object with a desired shape for the munitions structure.
    Type: Application
    Filed: March 13, 2019
    Publication date: January 23, 2020
    Inventors: Yogendra M. Gupta, Atakan Peker
  • Patent number: 10267608
    Abstract: Munitions structures comprising one or more high strength reactive alloys, in particular reactive bulk metallic glasses, have significant amounts of inherent chemical energy. This energy may be discharged by subjection of the munitions structure to rapid impulsive loading and fragmentation in the presence of oxygen and/or nitrogen. A munitions structure can be configured in both large and small penetrators, e.g. warheads and bullets, with increased lethality. The lethality of these munitions structures is augmented by means of rapidly and simultaneously imparting both mechanical energy (kinetic energy through impact and fragmentation) and chemical energy (blast and/or fireball) to a target. A high-strength reactive alloy can substitute at least in part one or both of explosives and inert structural materials in conventional munitions systems to improve performance and reduce parasitic weight of structural casing.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: April 23, 2019
    Assignee: Washington State University
    Inventors: Yogendra M. Gupta, Atakan Peker
  • Publication number: 20170268856
    Abstract: Munitions structures comprising one or more high strength reactive alloys, in particular reactive bulk metallic glasses, have significant amounts of inherent chemical energy. This energy may be discharged by subjection of the munitions structure to rapid impulsive loading and fragmentation in the presence of oxygen and/or nitrogen. A munitions structure can be configured in both large and small penetrators, e.g. warheads and bullets, with increased lethality. The lethality of these munitions structures is augmented by means of rapidly and simultaneously imparting both mechanical energy (kinetic energy through impact and fragmentation) and chemical energy (blast and/or fireball) to a target. A high-strength reactive alloy can substitute at least in part one or both of explosives and inert structural materials in conventional munitions systems to improve performance and reduce parasitic weight of structural casing.
    Type: Application
    Filed: June 7, 2017
    Publication date: September 21, 2017
    Inventors: Yogendra M. Gupta, Atakan Peker
  • Patent number: 9702676
    Abstract: Munitions structures comprising one or more high strength reactive alloys, in particular reactive bulk metallic glasses, have significant amounts of inherent chemical energy. This energy may be discharged by subjection of the munitions structure to rapid impulsive loading and fragmentation in the presence of oxygen and/or nitrogen. A munitions structure can be configured in both large and small penetrators, e.g. warheads and bullets, with increased lethality. The lethality of these munitions structures is augmented by means of rapidly and simultaneously imparting both mechanical energy (kinetic energy through impact and fragmentation) and chemical energy (blast and/or fireball) to a target. A high-strength reactive alloy can substitute at least in part one or both of explosives and inert structural materials in conventional munitions systems to improve performance and reduce parasitic weight of structural casing.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: July 11, 2017
    Assignee: Washington State University
    Inventors: Yogendra M. Gupta, Atakan Peker
  • Patent number: 6204429
    Abstract: Chemically contaminated soil samples are subjected to a shock wave sufficient in amplitude and duration to induce polymerization and/or decomposition of the contaminant chemicals.
    Type: Grant
    Filed: April 2, 1999
    Date of Patent: March 20, 2001
    Assignee: Washington State University Research Foundation
    Inventors: Yogendra M. Gupta, Ramamurthi Mahalingham