Patents by Inventor Yohan Barbarin

Yohan Barbarin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9454060
    Abstract: A mode locked semiconductor disk laser with an output beam having an ultra-short pulse length which provides the incident beam to a non linear microscope. The wavelength of the beam is at or near the action cross section maximum absorption wavelength for creating two photon excited fluorescence of a fluorescent biological marker in a sample. Semiconductor disk lasers combine excellent beam quality and output power, stability while maintaining simplicity and easiness of operation. In addition, these types of lasers are ideally suited for mass production as they are built in wafer-scale technology enabling a high level of integration. Importantly this non expensive, turn-key, compact laser system could be used as a platform to develop portable non-linear bio-imaging devices for clinical studies, facilitating its wide-spread adoption in “real-life” applications.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: September 27, 2016
    Assignee: The University of Dundee
    Inventors: Craig Hamilton, Graeme Malcolm, Ursula Keller, Thomas Sudmeyer, Kurt Weingarten, Pablo Loza-Alvarez, Yohan Barbarin, Edik Rafailov
  • Publication number: 20140016185
    Abstract: A mode locked semiconductor disk laser with an output beam having an ultra-short pulse length which provides the incident beam to a non linear microscope. The wavelength of the beam is at or near the action cross section maximum absorption wavelength for creating two photon excited fluorescence of a fluorescent biological marker in a sample. Semiconductor disk lasers combine excellent beam quality and output power, stability while maintaining simplicity and easiness of operation. In addition, these types of lasers are ideally suited for mass production as they are built in wafer-scale technology enabling a high level of integration. Importantly this non expensive, turn-key, compact laser system could be used as a platform to develop portable non-linear bio-imaging devices for clinical studies, facilitating its wide-spread adoption in “real-life” applications.
    Type: Application
    Filed: September 19, 2011
    Publication date: January 16, 2014
    Applicant: THE UNIVERSITY OF DUNDEE
    Inventors: Craig Hamilton, Graeme Malcolm, Ursula Keller, Thomas Sudmeyer, Kurt Weingarten, Pablo Loza-Alvarez, Yohan Barbarin, Edik Rafailov