Patents by Inventor Yohei Momma

Yohei Momma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210320290
    Abstract: A positive electrode active material which can improve cycle characteristics of a secondary battery is provided. Two kinds of regions are provided in a superficial portion of a positive electrode active material such as lithium cobaltate which has a layered rock-salt crystal structure. The inner region is a non-stoichiometric compound containing a transition metal such as titanium, and the outer region is a compound of representative elements such as magnesium oxide. The two kinds of regions each have a rock-salt crystal structure. The inner layered rock-salt crystal structure and the two kinds of regions in the superficial portion are topotaxy; thus, a change of the crystal structure of the positive electrode active material generated by charging and discharging can be effectively suppressed.
    Type: Application
    Filed: October 7, 2020
    Publication date: October 14, 2021
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Teruaki OCHIAI, Takahiro KAWAKAMI, Mayumi MIKAMI, Yohei MOMMA, Masahiro TAKAHASHI, Ayae TSURUTA
  • Publication number: 20210313571
    Abstract: A positive electrode active material, which has higher capacity and excellent charge and discharge cycle performance, for a lithium-ion secondary battery is provided. The positive electrode active material includes lithium, cobalt, magnesium, oxygen, and fluorine; when a pattern obtained by powder X ray diffraction using a CuK?1 ray is subjected to Rietveld analysis, the positive electrode active material has a crystal structure having a space group R-3m, a lattice constant of an a-axis is greater than 2.814×10(?10th power) m and less than 2.817×10(?10th power) m, and a lattice constant of a c-axis is greater than 14.05×10(?10th power) m and less than 14.07×10(?10th power) m; and in analysis by X-ray photoelectron spectroscopy, a relative value of a magnesium concentration is higher than or equal to 1.6 and lower than or equal to 6.0 with the cobalt concentration regarded as 1.
    Type: Application
    Filed: July 24, 2019
    Publication date: October 7, 2021
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yohei MOMMA, Teruaki OCHIAI, Mayumi MIKAMI, Jyo SAITOU
  • Publication number: 20210305553
    Abstract: Provided is a positive electrode active material which suppresses a reduction in capacity due to charge and discharge cycles when used in a lithium ion secondary battery. A covering layer is formed by segregation on a superficial portion of the positive electrode active material. The positive electrode active material includes a first region and a second region. The first region exists in an inner portion of the positive electrode active material. The second region exists in a superficial portion of the positive electrode active material and part of the inner portion thereof. The first region includes lithium, a transition metal, and oxygen. The second region includes magnesium, fluorine, and oxygen.
    Type: Application
    Filed: June 11, 2021
    Publication date: September 30, 2021
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Takahiro KAWAKAMI, Teruaki OCHIAI, Yohei MOMMA, Ayae TSURUTA, Masahiro Takahashi, Mayumi MIKAMI
  • Publication number: 20210265621
    Abstract: A positive electrode active material, which has a high capacity and excellent charge and discharge cycle performance, for a lithium-ion secondary battery is provided. Alternatively, a positive electrode active material that inhibits a decrease in capacity in charge and discharge cycles when used in a lithium-ion secondary battery is provided. Alternatively, a high-capacity secondary battery is provided. Alternatively, a highly safe or reliable secondary battery is provided. The positive electrode active material contains a first substance including a first crack and a second substance positioned inside the first crack. The first substance contains one or more of cobalt, manganese, and nickel, lithium, oxygen, magnesium, and fluorine. The second substance contains phosphorus and oxygen.
    Type: Application
    Filed: June 11, 2019
    Publication date: August 26, 2021
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kazuhito MACHIKAWA, Yohei MOMMA, Teruaki OCHIAI, Mayumi MIKAMI
  • Patent number: 11094927
    Abstract: Provided is a positive electrode active material which suppresses a reduction in capacity due to charge and discharge cycles when used in a lithium ion secondary battery. A covering layer is formed by segregation on a superficial portion of the positive electrode active material. The positive electrode active material includes a first region and a second region. The first region exists in an inner portion of the positive electrode active material. The second region exists in a superficial portion of the positive electrode active material and part of the inner portion thereof. The first region includes lithium, a transition metal, and oxygen. The second region includes magnesium, fluorine, and oxygen.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: August 17, 2021
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takahiro Kawakami, Teruaki Ochiai, Yohei Momma, Ayae Tsuruta, Masahiro Takahashi, Mayumi Mikami
  • Patent number: 11043660
    Abstract: A positive electrode active material which can improve cycle characteristics of a secondary battery is provided. Two kinds of regions are provided in a superficial portion of a positive electrode active material such as lithium cobaltate which has a layered rock-salt crystal structure. The inner region is a non-stoichiometric compound containing a transition metal such as titanium, and the outer region is a compound of representative elements such as magnesium oxide. The two kinds of regions each have a rock-salt crystal structure. The inner layered rock-salt crystal structure and the two kinds of regions in the superficial portion are topotaxy; thus, a change of the crystal structure of the positive electrode active material generated by charging and discharging can be effectively suppressed.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: June 22, 2021
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Teruaki Ochiai, Takahiro Kawakami, Mayumi Mikami, Yohei Momma, Masahiro Takahashi, Ayae Tsuruta
  • Publication number: 20210184214
    Abstract: A conduction path in an all-solid-state secondary battery is difficult to keep with a volume change in an active material due to charging and discharging in some cases. A positive electrode active material with a small volume change between the charged state and the discharged state is used for an all-solid-state secondary battery. For example, a positive electrode active material that has a layered rock-salt crystal structure in the discharged state and a crystal structure similar to the cadmium chloride type crystal structure in the charged state with a depth of charge of approximately 0.8 changes less in its volume and crystal structure between charging and discharging than known positive electrode active materials.
    Type: Application
    Filed: November 16, 2018
    Publication date: June 17, 2021
    Inventors: Mayumi MIKAMI, Yohei MOMMA, Kazutaka KURIKI, Kazuhei NARITA
  • Publication number: 20210167353
    Abstract: In manufacturing a storage battery electrode, a method for manufacturing a storage battery electrode with high capacity and stability is provided. As a method for preventing a mixture for forming an active material layer from becoming strongly basic, a first aqueous solution is formed by mixing an active material exhibiting basicity with an aqueous solution exhibiting acidity and including an oxidized derivative of a first conductive additive; a first mixture is formed by reducing the oxidized derivative of the first conductive additive by drying the first aqueous solution; a second mixture is formed by mixing a second conductive additive and a binder; a third mixture is formed by mixing the first mixture and the second mixture; and a current collector is coated with the third mixture. The strong basicity of the mixture for forming an active material layer is lowered; thus, the binder can be prevented from becoming gelled.
    Type: Application
    Filed: February 9, 2021
    Publication date: June 3, 2021
    Inventors: Takahiro KAWAKAMI, Yohei MOMMA, Teruaki OCHIAI, Tatsuya IKENUMA
  • Publication number: 20210167368
    Abstract: A positive electrode active material in which a capacity decrease caused by charge and discharge cycles is suppressed is provided. Alternatively, a positive electrode active material having a crystal structure that is unlikely to be broken by repeated charging and discharging is provided. The positive electrode active material contains titanium, nickel, aluminum, magnesium, and fluorine, and includes a region where titanium is unevenly distributed, a region where nickel is unevenly distributed, and a region where magnesium is unevenly distributed in a projection on its surface. Aluminum is preferably unevenly distributed in a surface portion, not in the projection, of the positive electrode active material.
    Type: Application
    Filed: November 19, 2020
    Publication date: June 3, 2021
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yohei MOMMA, Hiroshi KADOMA, Yoshihiro KOMATSU, Shiori SAGA, Shunpei YAMAZAKI
  • Publication number: 20210083281
    Abstract: A positive electrode active material having high capacity and excellent cycle performance is provided. The positive electrode active material has a small difference in a crystal structure between the charged state and the discharged state. For example, the crystal structure and volume of the positive electrode active material, which has a layered rock-salt crystal structure in the discharged state and a pseudo-spinel crystal structure in the charged state at a high voltage of approximately 4.6 V, are less likely to be changed by charge and discharge as compared with those of a known positive electrode active material.
    Type: Application
    Filed: May 11, 2018
    Publication date: March 18, 2021
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Mayumi MIKAMI, Aya UCHIDA, Yumiko YONEDA, Yohei MOMMA, Masahiro TAKAHASHI, Teruaki OCHIAI
  • Patent number: 10923706
    Abstract: In manufacturing a storage battery electrode, a method for manufacturing a storage battery electrode with high capacity and stability is provided. As a method for preventing a mixture for forming an active material layer from becoming strongly basic, a first aqueous solution is formed by mixing an active material exhibiting basicity with an aqueous solution exhibiting acidity and including an oxidized derivative of a first conductive additive; a first mixture is formed by reducing the oxidized derivative of the first conductive additive by drying the first aqueous solution; a second mixture is formed by mixing a second conductive additive and a binder; a third mixture is formed by mixing the first mixture and the second mixture; and a current collector is coated with the third mixture. The strong basicity of the mixture for forming an active material layer is lowered; thus, the binder can be prevented from becoming gelled.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: February 16, 2021
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takahiro Kawakami, Yohei Momma, Teruaki Ochiai, Tatsuya Ikenuma
  • Publication number: 20210028456
    Abstract: A positive electrode active material has a small difference in a crystal structure between the charged state and the discharged state. For example, the crystal structure and volume of the positive electrode active material, which has a layered rock-salt crystal structure in the discharged state and a pseudo-spinel crystal structure in the charged state at a high voltage of approximately 4.6 V, are less likely to be changed by charging and discharging as compared with those of a known positive electrode active material. In order to form the positive electrode active material having the pseudo-spinel crystal structure in the charged state, it is preferable that a halogen source such as a fluorine and a magnesium source be mixed with particles of a composite oxide containing lithium, a transition metal, and oxygen, which is synthesized in advance, and then the mixture be heated at an appropriate temperature for an appropriate time.
    Type: Application
    Filed: September 29, 2020
    Publication date: January 28, 2021
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Masahiro TAKAHASHI, Mayumi MIKAMI, Yohei MOMMA, Teruaki OCHIAI, Jyo SAITOU
  • Publication number: 20210020935
    Abstract: A positive electrode active material has a small difference in a crystal structure between the charged state and the discharged state. For example, the crystal structure and volume of the positive electrode active material, which has a layered rock-salt crystal structure in the discharged state and a pseudo-spinel crystal structure in the charged state at a high voltage of approximately 4.6 V, are less likely to be changed by charging and discharging as compared with those of a known positive electrode active material. In order to form the positive electrode active material having the pseudo-spinel crystal structure in the charged state, it is preferable that a halogen source such as a fluorine and a magnesium source be mixed with particles of a composite oxide containing lithium, a transition metal, and oxygen, which is synthesized in advance, and then the mixture be heated at an appropriate temperature for an appropriate time.
    Type: Application
    Filed: September 29, 2020
    Publication date: January 21, 2021
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Masahiro TAKAHASHI, Mayumi MIKAMI, Yohei MOMMA, Teruaki OCHIAI, Jyo SAITOU
  • Publication number: 20210020910
    Abstract: A positive electrode active material which can improve cycle characteristics of a secondary battery is provided. Two kinds of regions are provided in a superficial portion of a positive electrode active material such as lithium cobaltate which has a layered rock-salt crystal structure. The inner region is a non-stoichiometric compound containing a transition metal such as titanium, and the outer region is a compound of representative elements such as magnesium oxide. The two kinds of regions each have a rock-salt crystal structure. The inner layered rock-salt crystal structure and the two kinds of regions in the superficial portion are topotaxy; thus, a change of the crystal structure of the positive electrode active material generated by charging and discharging can be effectively suppressed.
    Type: Application
    Filed: October 7, 2020
    Publication date: January 21, 2021
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Teruaki OCHIAI, Takahiro KAWAKAMI, Mayumi MIKAMI, Yohei MOMMA, Masahiro TAKAHASHI, Ayae TSURUTA
  • Publication number: 20200395604
    Abstract: A positive electrode active material particle with little deterioration is provided. A power storage device with little deterioration is provided. A highly safe power storage device is provided. The positive electrode active material particle includes a first crystal grain, a second crystal grain; and a crystal grain boundary positioned between the crystal grain and the second crystal grain; the first crystal grain and the second crystal grain include lithium, a transition metal, and oxygen; the crystal grain boundary includes magnesium and oxygen; and the positive electrode active material particle includes a region where the ratio of the atomic concentration of magnesium in the crystal grain boundary to the atomic concentration of the transition metal in first crystal grain and the second crystal grain is greater than or equal to 0.010 and less than or equal to 0.50.
    Type: Application
    Filed: June 29, 2020
    Publication date: December 17, 2020
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Masahiro TAKAHASHI, Teruaki OCHIAI, Yohei MOMMA, Ayae TSURUTA
  • Publication number: 20200373569
    Abstract: Provided is a positive electrode active material for a lithium ion secondary battery having favorable cycle characteristics and high capacity. A covering layer containing aluminum and a covering layer containing magnesium are provided on a superficial portion of the positive electrode active material. The covering layer containing magnesium exists in a region closer to a particle surface than the covering layer containing aluminum is. The covering layer containing aluminum can be formed by a sol-gel method using an aluminum alkoxide. The covering layer containing magnesium can be formed as follows: magnesium and fluorine are mixed as a starting material and then subjected to heating after the sol-gel step, so that magnesium is segregated.
    Type: Application
    Filed: August 11, 2020
    Publication date: November 26, 2020
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yohei MOMMA, Takahiro KAWAKAMI, Teruaki OCHIAI, Masahiro TAKAHASHI
  • Publication number: 20200373567
    Abstract: Provided is a positive electrode active material for a lithium ion secondary battery having favorable cycle characteristics and high capacity. A covering layer containing aluminum and a covering layer containing magnesium are provided on a superficial portion of the positive electrode active material. The covering layer containing magnesium exists in a region closer to a particle surface than the covering layer containing aluminum is. The covering layer containing aluminum can be formed by a sol-gel method using an aluminum alkoxide. The covering layer containing magnesium can be formed as follows: magnesium and fluorine are mixed as a starting material and then subjected to heating after the sol-gel step, so that magnesium is segregated.
    Type: Application
    Filed: June 30, 2020
    Publication date: November 26, 2020
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yohei MOMMA, Takahiro KAWAKAMI, Teruaki OCHIAI, Masahiro TAKAHASHI
  • Publication number: 20200373568
    Abstract: Provided is a positive electrode active material for a lithium ion secondary battery having favorable cycle characteristics and high capacity. A covering layer containing aluminum and a covering layer containing magnesium are provided on a superficial portion of the positive electrode active material. The covering layer containing magnesium exists in a region closer to a particle surface than the covering layer containing aluminum is. The covering layer containing aluminum can be formed by a sol-gel method using an aluminum alkoxide. The covering layer containing magnesium can be formed as follows: magnesium and fluorine are mixed as a starting material and then subjected to heating after the sol-gel step, so that magnesium is segregated.
    Type: Application
    Filed: August 11, 2020
    Publication date: November 26, 2020
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yohei MOMMA, Takahiro KAWAKAMI, Teruaki OCHIAI, Masahiro TAKAHASHI
  • Publication number: 20200358091
    Abstract: Provided is a positive electrode active material for a lithium ion secondary battery having favorable cycle characteristics and high capacity. A covering layer containing aluminum and a covering layer containing magnesium are provided on a superficial portion of the positive electrode active material. The covering layer containing magnesium exists in a region closer to a particle surface than the covering layer containing aluminum is. The covering layer containing aluminum can be formed by a sol-gel method using an aluminum alkoxide. The covering layer containing magnesium can be formed as follows: magnesium and fluorine are mixed as a starting material and then subjected to heating after the sol-gel step, so that magnesium is segregated.
    Type: Application
    Filed: July 28, 2020
    Publication date: November 12, 2020
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yohei MOMMA, Takahiro KAWAKAMI, Teruaki OCHIAI, Masahiro TAKAHASHI
  • Publication number: 20200350576
    Abstract: To increase capacity per weight of a power storage device, a particle includes a first region, a second region in contact with at least part of a surface of the first region and located on the outside of the first region, and a third region in contact with at least part of a surface of the second region and located on the outside of the second region. The first and the second regions contain lithium and oxygen. At least one of the first region and the second region contains manganese. At least one of the first and the second regions contains an element M. The first region contains a first crystal having a layered rock-salt structure. The second region contains a second crystal having a layered rock-salt structure. An orientation of the first crystal is different from an orientation of the second crystal.
    Type: Application
    Filed: July 21, 2020
    Publication date: November 5, 2020
    Inventors: Takahiro KAWAKAMI, Teruaki OCHIAI, Shuhei YOSHITOMI, Takuya HIROHASHI, Mako MOTOYOSHI, Yohei MOMMA, Junya GOTO