Patents by Inventor Yohei Momma

Yohei Momma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240243255
    Abstract: A positive electrode active material particle with little deterioration is provided. A power storage device with little deterioration is provided. A highly safe power storage device is provided. The positive electrode active material particle includes a first crystal grain, a second crystal grain, and a crystal grain boundary positioned between the crystal grain and the second crystal grain; the first crystal grain and the second crystal grain include lithium, a transition metal, and oxygen; the crystal grain boundary includes magnesium and oxygen; and the positive electrode active material particle includes a region where the ratio of the atomic concentration of magnesium in the crystal grain boundary to the atomic concentration of the transition metal in first crystal grain and the second crystal grain is greater than or equal to 0.010 and less than or equal to 0.50.
    Type: Application
    Filed: February 15, 2024
    Publication date: July 18, 2024
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Masahiro TAKAHASHI, Teruaki OCHIAI, Yohei MOMMA, Ayae TSURUTA
  • Publication number: 20240234718
    Abstract: A method for forming a positive electrode active material that is stable in a high potential state and/or a high temperature state is provided. The method for forming a positive electrode active material includes a step of mixing a composite oxide containing lithium and cobalt with a barium source, a magnesium source, and a fluorine source to fabricate a first mixture containing barium fluoride, magnesium fluoride, and lithium fluoride; a step of heating the first mixture at a temperature higher than or equal to 800° C. and lower than or equal to 1100° C. for longer than or equal to 2 hours; a step of mixing the first mixture with a nickel source and an aluminum source to fabricate a second mixture; and a step of heating the second mixture at a temperature higher than or equal to 800° C. and lower than or equal to 1100° C. for longer than or equal to 2 hours. When a molar ratio of magnesium fluoride to barium fluoride contained in the first mixture is MgF2:BaF2=y:1, y satisfies greater than or equal to 0.
    Type: Application
    Filed: May 9, 2022
    Publication date: July 11, 2024
    Inventors: Jo SAITO, Yohei MOMMA, Mayumi MIKAMI, Teruaki OCHIAI
  • Publication number: 20240186486
    Abstract: A positive electrode active material particle with little deterioration is provided. A power storage device with little deterioration is provided. A highly safe power storage device is provided. The positive electrode active material particle includes a first crystal grain, a second crystal grain, and a crystal grain boundary positioned between the crystal grain and the second crystal grain; the first crystal grain and the second crystal grain include lithium, a transition metal, and oxygen; the crystal grain boundary includes magnesium and oxygen; and the positive electrode active material particle includes a region where the ratio of the atomic concentration of magnesium in the crystal grain boundary to the atomic concentration of the transition metal in first crystal grain and the second crystal grain is greater than or equal to 0.010 and less than or equal to 0.50.
    Type: Application
    Filed: February 15, 2024
    Publication date: June 6, 2024
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Masahiro TAKAHASHI, Teruaki OCHIAI, Yohei MOMMA, Ayae TSURUTA
  • Publication number: 20240170993
    Abstract: A power storage system with a high energy density is provided. A power storage system with a high degree of safety is provided. A secondary battery with a high energy density is provided. A secondary battery with a high degree of safety is provided. A charging unit has a function of controlling start and stop of charge of a secondary battery and a function of controlling a charge current of the secondary battery. The secondary battery includes a positive electrode, the positive electrode includes a positive electrode active material particle, the positive electrode active material particle is lithium cobalt oxide to which magnesium is added. The charging unit has a function of controlling charge of the secondary battery by a first step of starting constant current charge of the secondary battery at a time t1; and a second step of stopping the charge at a time t2.
    Type: Application
    Filed: February 24, 2022
    Publication date: May 23, 2024
    Inventors: Kazuki TANEMURA, Mayumi MIKAMI, Takeshi OSADA, Yohei MOMMA, Tetsuji ISHITANI, Haruki KATAGIRI
  • Publication number: 20240170667
    Abstract: A battery in which a decrease in discharge capacity retention rate in charge and discharge cycle tests is inhibited is provided. The battery includes a positive electrode and a negative electrode. The positive electrode is used as a positive electrode of a test battery in which a negative electrode includes a lithium metal. When a test of 50 repetitions of a cycle of charge and discharge in which, after constant current charge is performed at a charge rate of 1 C (1 C=200 mA/g) until a voltage of 4.6 V is reached, constant voltage charge is performed at a voltage of 4.6 V until the charge rate reaches 0.1 C, and constant current discharge is then performed at a discharge rate of 1 C until a voltage of 2.5 V is reached is performed in a 25° C. environment or a 45° C. environment and discharge capacity is measured in each cycle, a discharge capacity value measured in a 50th cycle accounts for higher than or equal to 90% and lower than 100% of a maximum discharge capacity value in all 50 cycles.
    Type: Application
    Filed: March 14, 2022
    Publication date: May 23, 2024
    Inventors: Shunpei YAMAZAKI, Tetsuya KAKEHATA, Yohei MOMMA, Yumiko YONEDA, Kazutaka KURIKI, Tatsuyoshi TAKAHASHI, Kunihiro FUKUSHIMA
  • Patent number: 11988720
    Abstract: A semiconductor device that detects deterioration of a secondary battery is provided. The semiconductor device includes a power gauge, an anomalous current detection circuit, and a control circuit. The power gauge includes a current divider circuit and an integrator circuit. The anomalous current detection circuit includes a first memory, a second memory, and a first comparator. The integrator circuit can convert a detection current detected at the current divider circuit into a detection voltage by integrating the detection current. The anomalous current detection circuit is supplied with the detection voltage, a first signal at a first time, and a second signal at a second time. The first signal can make the detection voltage at the first time be stored in the first memory and the second signal can make the detection voltage at the second time be stored in the second memory.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: May 21, 2024
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kei Takahashi, Takayuki Ikeda, Ryota Tajima, Mayumi Mikami, Yohei Momma, Munehiro Kozuma, Takanori Matsuzaki
  • Publication number: 20240145687
    Abstract: A novel positive electrode active material, a novel positive electrode, and a novel lithium-ion secondary battery are to be provided. The lithium-ion secondary battery includes a positive electrode, a negative electrode, and an electrolyte. The positive electrode includes a positive electrode active material that includes a composite oxide containing lithium and cobalt. The positive electrode active material includes barium, magnesium, and aluminum in a surface portion. When being analyzed, the surface portion preferably includes a region where a first point of the highest barium concentration and a second point of the highest magnesium concentration exist closer to the surface than a third point of the highest aluminum concentration does.
    Type: Application
    Filed: March 1, 2022
    Publication date: May 2, 2024
    Inventors: Jo SAITO, Yohei MOMMA, Tatsuyoshi TAKAHASHI, Nao KUROSAWA, Kunihiko SUZUKI
  • Publication number: 20240092655
    Abstract: A novel method for forming a positive electrode active material is provided. In the method for forming a positive electrode active material, a cobalt source and an additive element source are mixed to form an acidic solution; the acidic solution and an alkaline solution are made to react to form a cobalt compound; the cobalt compound and a lithium source are mixed to form a mixture; and the mixture is heated. The additive element source is a compound containing one or more selected from gallium, aluminum, boron, nickel, and indium.
    Type: Application
    Filed: January 21, 2022
    Publication date: March 21, 2024
    Inventors: Shunpei YAMAZAKI, Yusuke YOSHITANI, Yohei MOMMA, Kunihiro FUKUSHIMA, Tetsuya KAKEHATA
  • Publication number: 20240092658
    Abstract: A positive electrode active material with high charge and discharge capacity is provided. A novel positive electrode active material is provided. The positive electrode active material is manufactured in such a manner that after a cobalt compound (also referred to as a precursor) containing nickel, cobalt, and manganese is obtained by a coprecipitation method, a mixture obtained by mixing a lithium compound and the cobalt compound is heated at a first temperature; after the mixture is ground or crushed, heating at a second temperature that is a temperature higher than the first temperature is further performed; and after an additive is mixed, third heat treatment is performed. The first temperature is higher than or equal to 400° C. and lower than or equal to 700° C. The second temperature is higher than 700° C. and lower than or equal to 1050° C.
    Type: Application
    Filed: February 1, 2022
    Publication date: March 21, 2024
    Inventors: Yusuke YOSHITANI, Takashi HIRAHARA, Noriko MIYAIRI, Masahiko HAYAKAWA, Yohei MOMMA
  • Patent number: 11936036
    Abstract: A positive electrode active material in which a capacity decrease caused by charge and discharge cycles is suppressed is provided. Alternatively, a positive electrode active material having a crystal structure that is unlikely to be broken by repeated charging and discharging is provided. The positive electrode active material contains titanium, nickel, aluminum, magnesium, and fluorine, and includes a region where titanium is unevenly distributed, a region where nickel is unevenly distributed, and a region where magnesium is unevenly distributed in a projection on its surface. Aluminum is preferably unevenly distributed in a surface portion, not in the projection, of the positive electrode active material.
    Type: Grant
    Filed: November 19, 2020
    Date of Patent: March 19, 2024
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yohei Momma, Hiroshi Kadoma, Yoshihiro Komatsu, Shiori Saga, Shunpei Yamazaki
  • Publication number: 20240079583
    Abstract: A novel method for forming a positive electrode active material is provided. The method for forming a positive electrode active material includes causing a reaction between a cobalt aqueous solution and an alkaline aqueous solution to form a cobalt compound; mixing the cobalt compound and a lithium compound and performing a first heat treatment to form a first composite oxide; mixing the first composite oxide and a compound containing a first additive element and performing a second heat treatment to form a second composite oxide; and mixing the second composite oxide and a compound containing a second additive element and performing a third heat treatment. The first heat treatment is performed at a temperature higher than or equal to 700° C. and lower than or equal to 1100° C. The second heat treatment is performed at a temperature higher than or equal to 700° C. and lower than or equal to 1000° C.
    Type: Application
    Filed: January 13, 2022
    Publication date: March 7, 2024
    Inventors: Kazuya SHIMADA, Kousuke SASAKI, Takashi HIRAHARA, Yusuke YOSHITANI, Mayumi MIKAMI, Yohei MOMMA
  • Publication number: 20240063387
    Abstract: A positive electrode active material having a high charge-discharge capacity and high safety and a secondary battery including the positive electrode active material are provided. The positive electrode active material includes lithium, a transition metal M, an additive element, and oxygen. The powder volume resistivity of the positive electrode active material is higher than or equal to 1.0×105 ?·cm at a temperature of higher than or equal to 180° C. and lower than or equal to 200° C. and at a pressure of higher than or equal to 0.3 MPa and lower than or equal to 2 MPa. The median diameter of the positive electrode active material is preferably greater than or equal to 3 ?m and less than or equal to 10 ?m.
    Type: Application
    Filed: August 14, 2023
    Publication date: February 22, 2024
    Inventors: Shunpei YAMAZAKI, Tetsuya KAKEHATA, Shuhei YOSHITOMI, Yohei MOMMA, Atsushi KAWATSUKI, Mayumi MIKAMI, Junya MARUYAMA, Akio ENDO, Kaori OGITA
  • Patent number: 11901548
    Abstract: A positive electrode active material, which has a high capacity and excellent charge and discharge cycle performance, for a lithium-ion secondary battery is provided. Alternatively, a positive electrode active material that inhibits a decrease in capacity in charge and discharge cycles when used in a lithium-ion secondary battery is provided. Alternatively, a high-capacity secondary battery is provided. Alternatively, a highly safe or reliable secondary battery is provided. The positive electrode active material contains a first substance including a first crack and a second substance positioned inside the first crack. The first substance contains one or more of cobalt, manganese, and nickel, lithium, oxygen, magnesium, and fluorine. The second substance contains phosphorus and oxygen.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: February 13, 2024
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazuhito Machikawa, Yohei Momma, Teruaki Ochiai, Mayumi Mikami
  • Publication number: 20240047691
    Abstract: A secondary battery with little deterioration is provided. A highly reliable secondary battery is provided. A positive electrode active material included in the secondary battery includes a crystal of lithium cobalt oxide. The positive electrode active material includes a first region including a surface parallel to the (00l) plane of the crystal and a second region including a surface parallel to a plane intersecting with the (00l) plane. The positive electrode active material contains magnesium. The first region includes a portion with a magnesium concentration that is higher than or equal to 0.5 atomic % and lower than or equal to 10 atomic %. The second region includes a portion with a magnesium concentration that is higher than the magnesium concentration in the first region and is higher than or equal to 4 atomic % and lower than or equal to 30 atomic %.
    Type: Application
    Filed: July 27, 2023
    Publication date: February 8, 2024
    Inventors: Jo SAITO, Yohei MOMMA, Kunihiro FUKUSHIMA, Teppei OGUNI
  • Publication number: 20240030429
    Abstract: A positive electrode active material in which the number of defects that cause deterioration is small or progress of the defect is suppressed is provided. The positive electrode active material is used for a secondary battery. The positive electrode active material contains lithium cobalt oxide containing an additive element. After a cycle test is performed on a cell that uses the positive electrode active material for a positive electrode and a lithium electrode as a counter electrode, the positive electrode active material includes a defect and contains at least the same element as the additive element in a region in the vicinity of the defect. The additive element is contained also in a surface portion of the positive electrode active material.
    Type: Application
    Filed: October 28, 2021
    Publication date: January 25, 2024
    Inventors: Shunpei YAMAZAKI, Ryo ARASAWA, Shunichi ITO, Shiori SAGA, Yohei MOMMA, Jo SAITO, Kunihiko SUZUKI, Teppei OGUNI, Yuji IWAKI, Kanta ABE
  • Patent number: 11881578
    Abstract: In manufacturing a storage battery electrode, a method for manufacturing a storage battery electrode with high capacity and stability is provided. As a method for preventing a mixture for forming an active material layer from becoming strongly basic, a first aqueous solution is formed by mixing an active material exhibiting basicity with an aqueous solution exhibiting acidity and including an oxidized derivative of a first conductive additive; a first mixture is formed by reducing the oxidized derivative of the first conductive additive by drying the first aqueous solution; a second mixture is formed by mixing a second conductive additive and a binder; a third mixture is formed by mixing the first mixture and the second mixture; and a current collector is coated with the third mixture. The strong basicity of the mixture for forming an active material layer is lowered; thus, the binder can be prevented from becoming gelled.
    Type: Grant
    Filed: December 21, 2022
    Date of Patent: January 23, 2024
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takahiro Kawakami, Yohei Momma, Teruaki Ochiai, Tatsuya Ikenuma
  • Patent number: 11843113
    Abstract: Provided is a positive electrode active material which suppresses a reduction in capacity due to charge and discharge cycles when used in a lithium ion secondary battery. A covering layer is formed by segregation on a superficial portion of the positive electrode active material. The positive electrode active material includes a first region and a second region. The first region exists in an inner portion of the positive electrode active material. The second region exists in a superficial portion of the positive electrode active material and part of the inner portion thereof. The first region includes lithium, a transition metal, and oxygen. The second region includes magnesium, fluorine, and oxygen.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: December 12, 2023
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takahiro Kawakami, Teruaki Ochiai, Yohei Momma, Ayae Tsuruta, Masahiro Takahashi, Mayumi Mikami
  • Publication number: 20230361290
    Abstract: To increase capacity per weight of a power storage device, a particle includes a first region, a second region in contact with at least part of a surface of the first region and located on the outside of the first region, and a third region in contact with at least part of a surface of the second region and located on the outside of the second region. The first and the second regions contain lithium and oxygen. At least one of the first region and the second region contains manganese. At least one of the first and the second regions contains an element M. The first region contains a first crystal having a layered rock-salt structure. The second region contains a second crystal having a layered rock-salt structure. An orientation of the first crystal is different from an orientation of the second crystal.
    Type: Application
    Filed: June 21, 2023
    Publication date: November 9, 2023
    Inventors: Takahiro KAWAKAMI, Teruaki OCHIAI, Shuhei YOSHITOMI, Takuya HIROHASHI, Mako MOTOYOSHI, Yohei MOMMA, Junya GOTO
  • Publication number: 20230361267
    Abstract: To provide a positive electrode active material with which the cycle performance of a secondary battery can be improved and a manufacturing method thereof. When a secondary battery is fabricated using, for a positive electrode, a positive electrode active material obtained by depositing a solid electrolyte on a lithium compound with the use of a graphene compound by spray-drying treatment and volatilizing carbon from the graphene compound by heat treatment, the decomposition of an electrolyte solution in contact with the positive electrode active material can be inhibited, contributing to improvement in the cycle performance of the secondary battery.
    Type: Application
    Filed: July 13, 2023
    Publication date: November 9, 2023
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yohei Momma, Mayumi MIKAMI, Aya UCHIDA, Kazuhito MACHIKAWA
  • Publication number: 20230343952
    Abstract: A positive electrode active material with high charge and discharge capacity is provided. A positive electrode active material with high charge and discharge voltage is provided. A positive electrode active material that hardly deteriorates is provided. The positive electrode active material is formed through a plurality of heating steps. The second and subsequent heating steps are preferably performed at a temperature higher than or equal to 742° C. and lower than or equal to 920° C. for longer than or equal to an hour and shorter than or equal to 10 hours. Through the heating, magnesium, fluorine, and the like are distributed in a surface portion of the positive electrode active material with preferable concentrations. The crystal structure of general lithium cobalt oxide is easily broken because it becomes the H1-3 phase type crystal structure when being charged at 4.
    Type: Application
    Filed: June 15, 2021
    Publication date: October 26, 2023
    Inventors: Yohei MOMMA, Mayumi MIKAMI, Teruaki OCHIAI