Patents by Inventor Yohei Otome

Yohei Otome has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12054798
    Abstract: The steel material according to the present disclosure has a chemical composition consisting of, in mass %, C: 0.15 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.01 to 1.00%, P: 0.030% or less, S: 0.0050% or less, Al: 0.005 to 0.100%, Cr 0.60 to 1.80%, Mo: 0.80 to 2.30%, Ti: 0.002 to 0.020%, V: 0.05 to 0.30%, Nb: 0.002 to 0.100%, B: 0.0005 to 0.0040%, Cu: 0.01 to 0.50%, Ni: 0.01 to 0.50%, N: 0.0020 to 0.0100% and O: 0.0020% or less, with the balance being Fe and impurities. The number density of BN in the steel material is 10 to 100 particles/100 ?m2. The yield strength of the steel material is 758 MPa or more.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: August 6, 2024
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Yuji Arai, Shinji Yoshida, Hiroki Kamitani, Yohei Otome
  • Patent number: 11891680
    Abstract: A steel material according to the present disclosure has a chemical composition consisting of, in mass %: C: 0.15 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.01 to 1.00%, P: 0.030% or less, S: 0.0050% or less, Al: 0.005 to 0.100%, Cr 0.55 to 1.10%, Mo: 0.70 to 1.00%, Ti: 0.002 to 0.020%, V: 0.05 to 0.30%, Nb: 0.002 to 0.100%, B: 0.0005 to 0.0040%, N: 0.0100% or less, O: less than 0.0020%, and the balance being Fe and impurities, and satisfying Formula (1) described in the specification. A grain diameter of a prior-austenite grain is 15.0 ?m or less, and an average area of precipitate which is precipitated in a prior-austenite grain boundary is 12.5×10?3 ?m2 or less. A yield strength is 758 to 862 MPa.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: February 6, 2024
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Yohei Otome, Hiroki Kamitani, Atsushi Soma, Taro Oe, Nobuaki Komatsubara, Yuji Arai, Hideki Takabe
  • Publication number: 20220098712
    Abstract: A steel material according to the present disclosure has a chemical composition consisting of, in mass %: C: 0.20 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.01 to 1.00%, P: 0.030% or less, S: 0.0050% or less, Al: 0.005 to 0.100%, Cr: 0.60 to 1.50%, Mo: more than 1.00 to 2.00%, Ti: 0.002 to 0.020%, V: 0.05 to 0.30%, Nb: 0.005 to 0.100%, B: 0.0005 to 0.0040%, N: 0.0100% or less, O: less than 0.0020%, and the balance being Fe and impurities, and satisfying Formula (1) described in the specification. A grain diameter of a prior-austenite grain is 11.0 ?m or less, and an average area of precipitate which is precipitated in a prior-austenite grain boundary is 10.0×10?3 ?m2 or less. A yield strength is 758 to 862 MPa.
    Type: Application
    Filed: February 13, 2020
    Publication date: March 31, 2022
    Inventors: Hiroki KAMITANI, Yohei OTOME, Atsushi SOMA, Taro OE, Nobuaki KOMATSUBARA, Shinji YOSHIDA, Yuji ARAI
  • Publication number: 20220042148
    Abstract: A steel material according to the present disclosure has a chemical composition consisting of, in mass %: C: 0.15 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.01 to 1.00%, P: 0.030% or less, S: 0.0050% or less, Al: 0.005 to 0.100%, Cr 0.55 to 1.10%, Mo: 0.70 to 1.00%, Ti: 0.002 to 0.020%, V: 0.05 to 0.30%, Nb: 0.002 to 0.100%, B: 0.0005 to 0.0040%, N: 0.0100% or less, O: less than 0.0020%, and the balance being Fe and impurities, and satisfying Formula (1) described in the specification. A grain diameter of a prior-austenite grain is 15.0 ?m or less, and an average area of precipitate which is precipitated in a prior-austenite grain boundary is 12.5×10?3 ?m2 or less. A yield strength is 758 to 862 MPa.
    Type: Application
    Filed: February 13, 2020
    Publication date: February 10, 2022
    Inventors: Yohei OTOME, Hiroki KAMITANI, Atsushi SOMA, Taro OE, Nobuaki KOMATSUBARA, Yuji ARAI, Hideki TAKABE
  • Publication number: 20210262051
    Abstract: The steel material according to the present disclosure has a chemical composition consisting of, in mass %, C: 0.15 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.01 to 1.00%, P: 0.030% or less, S: 0.0050% or less, Al: 0.005 to 0.100%, Cr 0.60 to 1.80%, Mo: 0.80 to 2.30%, Ti: 0.002 to 0.020%, V: 0.05 to 0.30%, Nb: 0.002 to 0.100%, B: 0.0005 to 0.0040%, Cu: 0.01 to 0.50%, Ni: 0.01 to 0.50%, N: 0.0020 to 0.0100% and O: 0.0020% or less, with the balance being Fe and impurities. The number density of BN in the steel material is 10 to 100 particles/100 ?m2. The yield strength of the steel material is 758 MPa or more.
    Type: Application
    Filed: October 16, 2019
    Publication date: August 26, 2021
    Inventors: Yuji ARAI, Shinji YOSHIDA, Hiroki KAMITANI, Yohei OTOME
  • Patent number: 9783876
    Abstract: A stainless steel for oil wells which has excellent high-temperature corrosion resistance and can stably obtain a strength of not less than 758 MPa is provided. The stainless steel for oil wells contains, by masse, C: not more than 0.05%, Si: not more than 1.0%, Mn: 0.01 to 1.0%, P: not more than 0.05%, S: less than 0.002%, Cr: 16 to 18%, Mo: 1.8 to 3%, Cu: 1.0 to 3.5%, Ni: 3.0 to 5.5%, Co: 0.01 to 1.0%, Al: 0.001 to 0.1%, O: not more than 0.05%, and N: not more than 0.05%, the balance being Fe and impurities, and satisfies Formulas (1) and (2): Cr+4Ni+3Mo+2Cu?44??(1) Cr+3Ni+4Mo+2Cu/3?46??(2) where each symbol of element in Formulas (1) and (2) is substituted by the content (mass %) of a corresponding element.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: October 10, 2017
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Shinjiro Nakatsuka, Taro Ohe, Hisashi Amaya, Hideki Takabe, Yohei Otome, Yusaku Tomio, Masanao Seo, Tomohiko Omura, Kunio Kondo
  • Patent number: 9322087
    Abstract: The chemical composition of a stainless steel in accordance with the present invention consists of C: not more than 0.05%, Si: not more than 0.5%, Mn: 0.01 to 0.5%, P: not more than 0.04%, S: not more than 0.01%, Cr: more than 16.0 and not more than 18.0%, Ni: more than 4.0 and not more than 5.6%, Mo: 1.6 to 4.0%, Cu: 1.5 to 3.0%, Al: 0.001 to 0.10%, and N: not more than 0.050%, the balance being Fe and impurities, and satisfies Formulas (1) and (2). Also, the micro-structure thereof contains a martensitic phase and a ferritic phase having a volume ratio of 10 to 40%, and the ferritic phase distribution ratio is higher than 85%. Cr+Cu+Ni+Mo ?25.5??(1) ?8 ?30(C+N)+0.5Mn+Ni+Cu/2+8.2?1.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: April 26, 2016
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hideki Takabe, Kunio Kondo, Hisashi Amaya, Taro Ohe, Yohei Otome
  • Patent number: 9303296
    Abstract: A high-strength stainless steel for oil well having corrosion resistance excellent in a high-temperature environment, having excellent SSC resistance at normal temperature, and having better workability than 13% Cr steels has a chemical composition containing, by mass percent, C: at most 0.05%, Si: at most 1.0%, Mn: at most 0.3%, P: at most 0.05%, S: less than 0.002%, Cr: over 16% and at most 18%, Mo: 1.5 to 3.0%, Cu: 1.0 to 3.5%, Ni: 3.5 to 6.5%, Al: 0.001 to 0.1%, N: at most 0.025%, and O: at most 0.01%, the balance being Fe and impurities, a microstructure containing a martensite phase, 10 to 48.5%, by volume ratio, of a ferrite phase and at most 10%, by volume ratio, of a retained austenite phase, yield strength of at least 758 MPa and uniform elongation of at least 10%.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: April 5, 2016
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Taro Ohe, Hisashi Amaya, Hideki Takabe, Kunio Kondo, Yohei Otome
  • Publication number: 20150307972
    Abstract: The chemical composition of a stainless steel in accordance with the present invention consists of C: not more than 0.05%, Si: not more than 0.5%, Mn: 0.01 to 0.5%, P: not more than 0.04%, S: not more than 0.01%, Cr: more than 16.0 and not more than 18.0%, Ni: more than 4.0 and not more than 5.6%, Mo: 1.6 to 4.0%, Cu: 1.5 to 3.0%, Al: 0.001 to 0.10%, and N: not more than 0.050%, the balance being Fe and impurities, and satisfies Formulas (1) and (2). Also, the micro-structure thereof contains a martensitic phase and a ferritic phase having a volume ratio of 10 to 40%, and the ferritic phase distribution ratio is higher than 85%. Cr+Cu+Ni+Mo 25.5??(1) ?8 ?30(C+N)+0.5Mn+Ni+Cu/2+8.2?1.
    Type: Application
    Filed: July 8, 2015
    Publication date: October 29, 2015
    Inventors: Hideki TAKABE, Kunio KONDO, Hisashi AMAYA, Taro OHE, Yohei OTOME
  • Patent number: 9109268
    Abstract: The chemical composition of a stainless steel in accordance with the present invention consists of C: not more than 0.05%, Si: not more than 0.5%, Mn: 0.01 to 0.5%, P: not more than 0.04%, S: not more than 0.01%, Cr: more than 16.0 and not more than 18.0%, Ni: more than 4.0 and not more than 5.6%, Mo: 1.6 to 4.0%, Cu: 1.5 to 3.0%, Al: 0.001 to 0.10%, and N: not more than 0.050%, the balance being Fe and impurities, and satisfies Formulas (1) and (2). Also, the micro-structure thereof contains a martensitic phase and a ferritic phase having a volume ratio of 10 to 40%, and the ferritic phase distribution ratio is higher than 85%. Cr+Cu+Ni+Mo?25.5??(1) ?8?30(C+N)+0.5Mn+Ni+Cu/2+8.2?1.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: August 18, 2015
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hideki Takabe, Kunio Kondo, Hisashi Amaya, Taro Ohe, Yohei Otome
  • Publication number: 20150047831
    Abstract: A stainless steel for oil wells which has excellent high-temperature corrosion resistance and can stably obtain a strength of not less than 758 MPa is provided. The stainless steel for oil wells contains, by masse, C: not more than 0.05%, Si: not more than 1.0%, Mn: 0.01 to 1.0%, P: not more than 0.05%, S: less than 0.002%, Cr: 16 to 18%, Mo: 1.8 to 3%, Cu: 1.0 to 3.5%, Ni: 3.0 to 5.5%, Co: 0.01 to 1.0%, Al: 0.001 to 0.1%, O: not more than 0.05%, and N: not more than 0.05%, the balance being Fe and impurities, and satisfies Formulas (1) and (2): Cr+4Ni+3Mo+2Cu?44??(1) Cr+3Ni+4Mo+2Cu/3?46??(2) where each symbol of element in Formulas (1) and (2) is substituted by the content (mass %) of a corresponding element.
    Type: Application
    Filed: February 27, 2013
    Publication date: February 19, 2015
    Inventors: Shinjiro Nakatsuka, Taro Ohe, Hisashi Amaya, Hideki Takabe, Yohei Otome, Yusaku Tomio, Masanao Seo, Tomohiko Omura, Kunio Kondo
  • Publication number: 20120328897
    Abstract: A high-strength stainless steel for oil well having corrosion resistance excellent in a high-temperature environment, having excellent SSC resistance at normal temperature, and having better workability than 13% Cr steels has a chemical composition containing, by mass percent, C: at most 0.05%, Si: at most 1.0%, Mn: at most 0.3%, P: at most 0.05%, S: less than 0.002%, Cr: over 16% and at most 18%, Mo: 1.5 to 3.0%, Cu: 1.0 to 3.5%, Ni: 3.5 to 6.5%, Al: 0.001 to 0.1%, N: at most 0.025%, and O: at most 0.01%, the balance being Fe and impurities, a microstructure containing a martensite phase, 10 to 48.5%, by volume ratio, of a ferrite phase and at most 10%, by volume ratio, of a retained austenite phase, yield strength of at least 758 MPa and uniform elongation of at least 10%.
    Type: Application
    Filed: September 10, 2012
    Publication date: December 27, 2012
    Applicant: SUMITOMO METAL INDUSTRIES, LTD.
    Inventors: Taro OHE, Hisashi Amaya, Hideki Takabe, Kunio Kondo, Yohei Otome
  • Publication number: 20120031530
    Abstract: The chemical composition of a stainless steel in accordance with the present invention consists of C: not more than 0.05%, Si: not more than 0.5%, Mn: 0.01 to 0.5%, P: not more than 0.04%, S: not more than 0.01%, Cr: more than 16.0 and not more than 18.0%, Ni: more than 4.0 and not more than 5.6%, Mo: 1.6 to 4.0%, Cu: 1.5 to 3.0%, Al: 0.001 to 0.10%, and N: not more than 0.050%, the balance being Fe and impurities, and satisfies Formulas (1) and (2). Also, the micro-structure thereof contains a martensitic phase and a ferritic phase having a volume ratio of 10 to 40%, and the ferritic phase distribution ratio is higher than 85%. Cr+Cu+Ni+Mo?25.5??(1) ?8?30(C+N)+0.5Mn+Ni+Cu/2+8.2?1.
    Type: Application
    Filed: October 19, 2011
    Publication date: February 9, 2012
    Applicant: SUMITOMO METAL INDUSTRIES, LTD.
    Inventors: Hideki TAKABE, Kunio KONDO, Hisashi AMAYA, Taro OHE, Yohei OTOME
  • Publication number: 20120031534
    Abstract: A method for producing a high-strength Cr—Ni alloy seamless pipe comprising preparing an alloy billet with a chemical composition consisting, by mass %, of C: 0.05% or less, Si: 1.0% or less, Mn: less than 3.0%, P: 0.005% or less, S: 0.005% or less, Cu: 0.01 to 4.0%, Ni: 25% or more and less than 35%, Cr: 20 to 30%, Mo: 0.01% or more and less than 4.0%, N: 0.10 to 0.30%, Al: 0.03 to 0.30%, O (oxygen): 0.01% or less, REM (rare earth metal): 0.01 to 0.20%, and the balance being Fe and impurities, and satisfying the formula N×P/REM?0.10, wherein P, N and REM represent the contents (mass %) of P, N and REM, respectively. The pipe is hot worked using cross roll piercing, solution heat treated, and cold worked. The pipe is excellent in hot workability, stress corrosion cracking and does not laminate during cross piercing.
    Type: Application
    Filed: September 26, 2011
    Publication date: February 9, 2012
    Applicant: SUMITOMO METAL INDUSTRIES, LTD.
    Inventors: Yohei OTOME, Masaaki Igarashi, Hirokazu Okada, Kunio Kondo, Masayuki Sagara, Kazuhiro Shimoda
  • Patent number: 8071020
    Abstract: A high strength Cr—Ni alloy material excellent in hot workability and stress corrosion cracking resistance, and seamless pipe for oil well application which consists of, by mass percent, C: 0.05% or less, Si: 0.05 to 1.0%, Mn: 0.01% or more and less than 3.0%, P: 0.05% or less, S: 0.005% or less, Cu: 0.01 to 4%, Ni: 25% or more and less than 35%, Cr: 20 to 30%, Mo: 0.01% or more and less than 4.0%, N: 0.10 to 0.30%, Al: 0.03 to 0.30%, O (oxygen): 0.01% or less, and REM (rare earth metal): 0.01 to 0.20% with the balance being Fe and impurities, and also satisfies the conditions in the following formula (1). N×P/REM?0.40??formula (1) where P, N, and REM in the formula (1) respectively denote the contents (mass %) of P, N, and REM. The high strength Cr—Ni alloy material may further contain one or more types of W, Ti, Nb, Zr, V, Ca, and Mg, instead of part of Fe.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: December 6, 2011
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Yohei Otome, Masaaki Igarashi, Hisashi Amaya, Hirokazu Okada
  • Publication number: 20090291017
    Abstract: [Object] To provide a high strength Cr—Ni alloy material excellent in hot workability and stress corrosion cracking resistance, and seamless pipe for oil well. [Solution] A high strength Cr—Ni alloy material which consists of, by mass percent, C: 0.05% or less, Si: 0.05 to 1.0%, Mn: 0.01% or more and less than 3.0%, P: 0.05% or less, S: 0.005% or less, Cu: 0.01 to 4%, Ni: 25% or more and less than 35%, Cr: 20 to 30%, Mo: 0.01% or more and less than 4.0%, N: 0.10 to 0.30%, Al: 0.03 to 0.30%, O (oxygen): 0.01% or less, and REM (rare earth metal): 0.01 to 0.20%, with the balance being Fe and impurities, and also satisfies the conditions in the following formula (1). N×P/REM?0.40??formula (1) where P, N, and REM in the formula (1) respectively denote the contents (mass %) of P, N, and REM. The high strength Cr—Ni alloy material may further contain one or more types of W, Ti, Nb, Zr, V, Ca, and Mg, instead of part of Fe.
    Type: Application
    Filed: June 16, 2009
    Publication date: November 26, 2009
    Inventors: Yohei Otome, Masaaki Igarashi, Hisashi Amaya, Hirokazu Okada