Patents by Inventor Yoichi Iikubo

Yoichi Iikubo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230317832
    Abstract: A method for modifying an insulating film is provided. The method includes a first step of preparing an insulating film containing hydrogen, and a second step of performing microwave treatment on the insulating film to release the hydrogen in the insulating film as water molecules, so that a hydrogen concentration in the insulating film is reduced. Note that the microwave treatment is preferably performed using an oxygen gas and an argon gas at a temperature range of higher than or equal to 200° C. and lower than or equal to 300° C., and the proportion of the flow rate of the oxygen gas to the total of the flow rate of the oxygen gas and the flow rate of the argon gas is preferably greater than 0 % and less than or equal to 50 %.
    Type: Application
    Filed: August 6, 2021
    Publication date: October 5, 2023
    Inventors: Shunpei YAMAZAKI, Fumito ISAKA, Yoichi IIKUBO, Yuji EGI, Yasuhiro JINBO
  • Publication number: 20230144044
    Abstract: A method for manufacturing a semiconductor device with a high yield is provided. In a semiconductor device including an oxide semiconductor over a substrate, when an insulator in contact with the oxide semiconductor, such as a gate insulator or an interlayer film, is deposited, the insulator can be deposited without diffusion of hydrogen into the oxide semiconductor by setting a constant derived from deposition conditions within a given range. Specifically, setting values of deposition power, the effective electrode area, deposition pressure, and the flow rate of a deposition gas containing hydrogen in the deposition conditions can be selected as appropriate.
    Type: Application
    Filed: March 12, 2021
    Publication date: May 11, 2023
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoichi Iikubo, Daisuke YAMAGUCHI, Yuichi YANAGISAWA
  • Patent number: 9536774
    Abstract: An SOI substrate having an SOI layer that can be used in practical applications even when a substrate with low upper temperature limit, such as a glass substrate, is used, is provided. A semiconductor device using such an SOI substrate, is provided. In bonding a single-crystal semiconductor layer to a substrate having an insulating surface or an insulating substrate, a silicon oxide film formed using organic silane as a material on one or both surfaces that are to form a bond is used. According to the present invention, a substrate with an upper temperature limit of 700° C. or lower, such as a glass substrate, can be used, and an SOI layer that is strongly bonded to the substrate can be obtained. In other words, a single-crystal semiconductor layer can be formed over a large-area substrate that is longer than one meter on each side.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: January 3, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideto Ohnuma, Tetsuya Kakehata, Yoichi Iikubo
  • Publication number: 20140329371
    Abstract: An SOI substrate having an SOI layer that can be used in practical applications even when a substrate with low upper temperature limit, such as a glass substrate, is used, is provided. A semiconductor device using such an SOI substrate, is provided. In bonding a single-crystal semiconductor layer to a substrate having an insulating surface or an insulating substrate, a silicon oxide film formed using organic silane as a material on one or both surfaces that are to form a bond is used. According to the present invention, a substrate with an upper temperature limit of 700° C. or lower, such as a glass substrate, can be used, and an SOI layer that is strongly bonded to the substrate can be obtained. In other words, a single-crystal semiconductor layer can be formed over a large-area substrate that is longer than one meter on each side.
    Type: Application
    Filed: July 21, 2014
    Publication date: November 6, 2014
    Inventors: Hideto OHNUMA, Tetsuya KAKEHATA, Yoichi IIKUBO
  • Patent number: 8823063
    Abstract: An SOI substrate having an SOI layer that can be used in practical applications even when a substrate with low upper temperature limit, such as a glass substrate, is used, is provided. A semiconductor device using such an SOI substrate, is provided. In bonding a single-crystal semiconductor layer to a substrate having an insulating surface or an insulating substrate, a silicon oxide film formed using organic silane as a material on one or both surfaces that are to form a bond is used. According to the present invention, a substrate with an upper temperature limit of 700° C. or lower, such as a glass substrate, can be used, and an SOI layer that is strongly bonded to the substrate can be obtained. In other words, a single-crystal semiconductor layer can be formed over a large-area substrate that is longer than one meter on each side.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: September 2, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideto Ohnuma, Tetsuya Kakehata, Yoichi Iikubo
  • Patent number: 8598013
    Abstract: To provide a method for manufacturing an SOI substrate provided with a semiconductor layer which can be used practically even when a substrate having a low heat-resistant temperature, such as a glass substrate or the like is used. The semiconductor layer is transferred to a supporting substrate by the steps of irradiating a semiconductor wafer with ions from one surface to form a damaged layer; forming an insulating layer over one surface of the semiconductor wafer; attaching one surface of the supporting substrate to the insulating layer formed over the semiconductor wafer and performing heat treatment to bond the supporting substrate to the semiconductor wafer; and performing separation at the damaged layer into the semiconductor wafer and the supporting substrate. The damaged layer remaining partially over the semiconductor layer is removed by wet etching and a surface of the semiconductor layer is irradiated with a laser beam.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: December 3, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hideto Ohnuma, Yoichi Iikubo, Yoshiaki Yamamoto, Kenichiro Makino
  • Patent number: 8361873
    Abstract: It is an object of the present invention is to provide a method of manufacturing an SOI substrate provided with a single-crystal semiconductor layer which can be practically used even when a substrate having a low heat-resistant temperature, such as a glass substrate or the like, is used, and further, to manufacture a semiconductor device with high reliability by using such an SOI substrate. A semiconductor layer which is separated from a semiconductor substrate and bonded to a supporting substrate having an insulating surface is irradiated with electromagnetic waves, and the surface of the semiconductor layer is subjected to polishing treatment. At least part of a region of the semiconductor layer is melted by irradiation with electromagnetic waves, and a crystal defect in the semiconductor layer can be reduced. Further, the surface of the semiconductor layer can be polished and planarized by polishing treatment.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: January 29, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideto Ohnuma, Ryota Imahayashi, Yoichi Iikubo, Kenichiro Makino, Sho Nagamatsu
  • Patent number: 8198173
    Abstract: To improve bonding strength and improve reliability of an SOI substrate in bonding a semiconductor substrate and a base substrate to each other even when an insulating film containing nitrogen is used as a bonding layer, an oxide film is provided on the semiconductor substrate side, a nitrogen-containing layer is provided on the base substrate side, and the oxide film formed on the semiconductor substrate and the nitrogen-containing layer formed over the base substrate are bonded to each other. Further, plasma treatment is performed on at least one of the oxide film and the nitrogen-containing layer before bonding the oxide film formed on the semiconductor substrate and the nitrogen-containing layer formed over the base substrate to each other. Plasma treatment can be performed in a state in which a bias voltage is applied.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: June 12, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideto Ohnuma, Kenichiro Makino, Yoichi Iikubo, Masaharu Nagai, Aiko Shiga
  • Publication number: 20120025274
    Abstract: An SOI substrate having an SOI layer that can be used in practical applications even when a substrate with low upper temperature limit, such as a glass substrate, is used, is provided. A semiconductor device using such an SOI substrate, is provided. In bonding a single-crystal semiconductor layer to a substrate having an insulating surface or an insulating substrate, a silicon oxide film formed using organic silane as a material on one or both surfaces that are to form a bond is used. According to the present invention, a substrate with an upper temperature limit of 700° C. or lower, such as a glass substrate, can be used, and an SOI layer that is strongly bonded to the substrate can be obtained. In other words, a single-crystal semiconductor layer can be formed over a large-area substrate that is longer than one meter on each side.
    Type: Application
    Filed: October 6, 2011
    Publication date: February 2, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Hideto OHNUMA, Tetsuya KAKEHATA, Yoichi IIKUBO
  • Patent number: 8101501
    Abstract: To provide a method of manufacturing a semiconductor device, which prevents impurities from entering an SOI substrate. A source gas including one or plural kinds selected from a hydrogen gas, a helium gas, or halogen gas are excited to generate ions, and the ions are added to a bonding substrate to thereby form a fragile layer in the bonding substrate. Then, a region of the bonding substrate that is on and near the surface thereof, i.e., a region ranging from a shallower position than the fragile layer to the surface is removed by etching, polishing, or the like. Next, after attaching the bonding substrate to a base substrate, the bonding substrate is separated at the fragile layer to thereby form a semiconductor film over the base substrate. After forming the semiconductor film over the base substrate, a semiconductor element is formed using the semiconductor film.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: January 24, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideto Ohnuma, Yoichi Iikubo, Shunpei Yamazaki
  • Patent number: 8034694
    Abstract: An SOI substrate having an SOI layer that can be used in practical applications even when a substrate with low upper temperature limit, such as a glass substrate, is used, is provided. A semiconductor device using such an SOI substrate, is provided. In bonding a single-crystal semiconductor layer to a substrate having an insulating surface or an insulating substrate, a silicon oxide film formed using organic silane as a material on one or both surfaces that are to form a bond is used. According to the present invention, a substrate with an upper temperature limit of 700° C. or lower, such as a glass substrate, can be used, and an SOI layer that is strongly bonded to the substrate can be obtained. In other words, a single-crystal semiconductor layer can be formed over a large-area substrate that is longer than one meter on each side.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: October 11, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideto Ohnuma, Tetsuya Kakehata, Yoichi Iikubo
  • Patent number: 7955949
    Abstract: There is provided a method of manufacturing an SOI substrate which is practicable even when a supporting substrate having a low allowable temperature limit is used. A separation layer is formed in a region at a certain depth from a surface of a semiconductor substrate, and a first heat treatment is conducted when a semiconductor layer on the separation layer is bonded to the supporting substrate and separated. A second heat treatment is conducted to the supporting substrate to which the semiconductor layer is bonded. The second heat treatment is conducted at a temperature which is equal to or higher than the temperature of the first heat treatment and does not exceed a strain point of the supporting substrate. When the first heat treatment and the second heat treatment are conducted at the same temperature, a treatment time of the second heat treatment may be set to be longer.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: June 7, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideto Ohnuma, Yoichi Iikubo, Takayoshi Sato
  • Publication number: 20110039395
    Abstract: To improve bonding strength and improve reliability of an SOI substrate in bonding a semiconductor substrate and a base substrate to each other even when an insulating film containing nitrogen is used as a bonding layer, an oxide film is provided on the semiconductor substrate side, a nitrogen-containing layer is provided on the base substrate side, and the oxide film formed on the semiconductor substrate and the nitrogen-containing layer formed over the base substrate are bonded to each other. Further, plasma treatment is performed on at least one of the oxide film and the nitrogen-containing layer before bonding the oxide film formed on the semiconductor substrate and the nitrogen-containing layer formed over the base substrate to each other. Plasma treatment can be performed in a state in which a bias voltage is applied.
    Type: Application
    Filed: October 22, 2010
    Publication date: February 17, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Hideto OHNUMA, Kenichiro MAKINO, Yoichi IIKUBO, Masaharu NAGAI, Aiko SHIGA
  • Patent number: 7829432
    Abstract: To improve bonding strength and improve reliability of an SOI substrate in bonding a semiconductor substrate and a base substrate to each other even when an insulating film containing nitrogen is used as a bonding layer, an oxide film is provided on the semiconductor substrate side, a nitrogen-containing layer is provided on the base substrate side, and the oxide film formed on the semiconductor substrate and the nitrogen-containing layer formed over the base substrate are bonded to each other. Further, plasma treatment is performed on at least one of the oxide film and the nitrogen-containing layer before bonding the oxide film formed on the semiconductor substrate and the nitrogen-containing layer formed over the base substrate to each other. Plasma treatment can be performed in a state in which a bias voltage is applied.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: November 9, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideto Ohnuma, Kenichiro Makino, Yoichi Iikubo, Masaharu Nagai, Aiko Shiga
  • Publication number: 20100270639
    Abstract: There is provided a method of manufacturing an SOI substrate which is practicable even when a supporting substrate having a low allowable temperature limit is used. A separation layer is formed in a region at a certain depth from a surface of a semiconductor substrate, and a first heat treatment is conducted when a semiconductor layer on the separation layer is bonded to the supporting substrate and separated. A second heat treatment is conducted to the supporting substrate to which the semiconductor layer is bonded. The second heat treatment is conducted at a temperature which is equal to or higher than the temperature of the first heat treatment and does not exceed a strain point of the supporting substrate. When the first heat treatment and the second heat treatment are conducted at the same temperature, a treatment time of the second heat treatment may be set to be longer.
    Type: Application
    Filed: July 2, 2010
    Publication date: October 28, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Hideto OHNUMA, Yoichi IIKUBO, Takayoshi SATO
  • Publication number: 20100203706
    Abstract: It is an object of the present invention is to provide a method of manufacturing an SOI substrate provided with a single-crystal semiconductor layer which can be practically used even when a substrate having a low heat-resistant temperature, such as a glass substrate or the like, is used, and further, to manufacture a semiconductor device with high reliability by using such an SOI substrate. A semiconductor layer which is separated from a semiconductor substrate and bonded to a supporting substrate having an insulating surface is irradiated with electromagnetic waves, and the surface of the semiconductor layer is subjected to polishing treatment. At least part of a region of the semiconductor layer is melted by irradiation with electromagnetic waves, and a crystal defect in the semiconductor layer can be reduced. Further, the surface of the semiconductor layer can be polished and planarized by polishing treatment.
    Type: Application
    Filed: April 19, 2010
    Publication date: August 12, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Hideto OHNUMA, Ryota IMAHAYASHI, Yoichi IIKUBO, Kenichiro MAKINO, Sho NAGAMATSU
  • Patent number: 7767542
    Abstract: There is provided a method of manufacturing an SOI substrate which is practicable even when a supporting substrate having a low allowable temperature limit is used. A separation layer is formed in a region at a certain depth from a surface of a semiconductor substrate, and a first heat treatment is conducted when a semiconductor layer on the separation layer is bonded to the supporting substrate and separated. A second heat treatment is conducted to the supporting substrate to which the semiconductor layer is bonded. The second heat treatment is conducted at a temperature which is equal to or higher than the temperature of the first heat treatment and does not exceed a strain point of the supporting substrate. When the first heat treatment and the second heat treatment are conducted at the same temperature, a treatment time of the second heat treatment may be set to be longer.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: August 3, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd
    Inventors: Hideto Ohnuma, Yoichi Iikubo, Takayoshi Sato
  • Patent number: 7727846
    Abstract: It is an object of the present invention is to provide a method of manufacturing an SOI substrate provided with a single-crystal semiconductor layer which can be practically used even when a substrate having a low heat-resistant temperature, such as a glass substrate or the like, is used, and further, to manufacture a semiconductor device with high reliability by using such an SOI substrate. A semiconductor layer which is separated from a semiconductor substrate and bonded to a supporting substrate having an insulating surface is irradiated with electromagnetic waves, and the surface of the semiconductor layer is subjected to polishing treatment. At least part of a region of the semiconductor layer is melted by irradiation with electromagnetic waves, and a crystal defect in the semiconductor layer can be reduced. Further, the surface of the semiconductor layer can be polished and planarized by polishing treatment.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: June 1, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd
    Inventors: Hideto Ohnuma, Ryota Imahayashi, Yoichi Iikubo, Kenichiro Makino, Sho Nagamatsu
  • Publication number: 20090325363
    Abstract: To improve bonding strength and improve reliability of an SOI substrate in bonding a semiconductor substrate and a base substrate to each other even when an insulating film containing nitrogen is used as a bonding layer, an oxide film is provided on the semiconductor substrate side, a nitrogen-containing layer is provided on the base substrate side, and the oxide film formed on the semiconductor substrate and the nitrogen-containing layer formed over the base substrate are bonded to each other. Further, plasma treatment is performed on at least one of the oxide film and the nitrogen-containing layer before bonding the oxide film formed on the semiconductor substrate and the nitrogen-containing layer formed over the base substrate to each other. Plasma treatment can be performed in a state in which a bias voltage is applied.
    Type: Application
    Filed: June 23, 2009
    Publication date: December 31, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Hideto OHNUMA, Kenichiro MAKINO, Yoichi IIKUBO, Masaharu NAGAI, Aiko SHIGA
  • Publication number: 20090137101
    Abstract: To provide a method for manufacturing an SOI substrate provided with a semiconductor layer which can be used practically even when a substrate having a low heat-resistant temperature, such as a glass substrate or the like is used. The semiconductor layer is transferred to a supporting substrate by the steps of irradiating a semiconductor wafer with ions from one surface to form a damaged layer; forming an insulating layer over one surface of the semiconductor wafer; attaching one surface of the supporting substrate to the insulating layer formed over the semiconductor wafer and performing heat treatment to bond the supporting substrate to the semiconductor wafer; and performing separation at the damaged layer into the semiconductor wafer and the supporting substrate. The damaged layer remaining partially over the semiconductor layer is removed by wet etching and a surface of the semiconductor layer is irradiated with a laser beam.
    Type: Application
    Filed: October 8, 2008
    Publication date: May 28, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Hideto OHNUMA, Yoichi IIKUBO, Yoshiaki YAMAMOTO, Kenichiro MAKINO