Patents by Inventor Yoichi Kurosawa

Yoichi Kurosawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11967505
    Abstract: A method for manufacturing a sputtering target with which an oxide semiconductor film with a small amount of defects can be formed is provided. Alternatively, an oxide semiconductor film with a small amount of defects is formed. A method for manufacturing a sputtering target is provided, which includes the steps of: forming a polycrystalline In-M-Zn oxide (M represents a metal chosen among aluminum, titanium, gallium, yttrium, zirconium, lanthanum, cesium, neodymium, and hafnium) powder by mixing, sintering, and grinding indium oxide, an oxide of the metal, and zinc oxide; forming a mixture by mixing the polycrystalline In-M-Zn oxide powder and a zinc oxide powder; forming a compact by compacting the mixture; and sintering the compact.
    Type: Grant
    Filed: April 21, 2023
    Date of Patent: April 23, 2024
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masashi Tsubuku, Masashi Oota, Yoichi Kurosawa, Noritaka Ishihara
  • Publication number: 20230260785
    Abstract: A method for manufacturing a sputtering target with which an oxide semiconductor film with a small amount of defects can be formed is provided. Alternatively, an oxide semiconductor film with a small amount of defects is formed. A method for manufacturing a sputtering target is provided, which includes the steps of: forming a polycrystalline In-M-Zn oxide (M represents a metal chosen among aluminum, titanium, gallium, yttrium, zirconium, lanthanum, cesium, neodymium, and hafnium) powder by mixing, sintering, and grinding indium oxide, an oxide of the metal, and zinc oxide; forming a mixture by mixing the polycrystalline In-M-Zn oxide powder and a zinc oxide powder; forming a compact by compacting the mixture; and sintering the compact.
    Type: Application
    Filed: April 21, 2023
    Publication date: August 17, 2023
    Inventors: Shunpei YAMAZAKI, Masashi TSUBUKU, Masashi OOTA, Yoichi KUROSAWA, Noritaka ISHIHARA
  • Patent number: 11637015
    Abstract: A method for manufacturing a sputtering target with which an oxide semiconductor film with a small amount of defects can be formed is provided. Alternatively, an oxide semiconductor film with a small amount of defects is formed. A method for manufacturing a sputtering target is provided, which includes the steps of: forming a polycrystalline In-M-Zn oxide (M represents a metal chosen among aluminum, titanium, gallium, yttrium, zirconium, lanthanum, cesium, neodymium, and hafnium) powder by mixing, sintering, and grinding indium oxide, an oxide of the metal, and zinc oxide; forming a mixture by mixing the polycrystalline In-M-Zn oxide powder and a zinc oxide powder; forming a compact by compacting the mixture; and sintering the compact.
    Type: Grant
    Filed: October 1, 2021
    Date of Patent: April 25, 2023
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masashi Tsubuku, Masashi Oota, Yoichi Kurosawa, Noritaka Ishihara
  • Publication number: 20220359575
    Abstract: To provide a method for manufacturing a semiconductor device including an oxide semiconductor film having conductivity, or a method for manufacturing a semiconductor device including an oxide semiconductor film having a light-transmitting property and conductivity. The method for manufacturing a semiconductor device includes the steps of forming an oxide semiconductor film over a first insulating film, performing first heat treatment in an atmosphere where oxygen contained in the oxide semiconductor film is released, and performing second heat treatment in a hydrogen-containing atmosphere, so that an oxide semiconductor film having conductivity is formed.
    Type: Application
    Filed: July 11, 2022
    Publication date: November 10, 2022
    Inventors: Masashi OOTA, Noritaka ISHIHARA, Motoki NAKASHIMA, Yoichi KUROSAWA, Shunpei YAMAZAKI, Yasuharu HOSAKA, Toshimitsu OBONAI, Junichi KOEZUKA
  • Publication number: 20220020586
    Abstract: A method for manufacturing a sputtering target with which an oxide semiconductor film with a small amount of defects can be formed is provided. Alternatively, an oxide semiconductor film with a small amount of defects is formed. A method for manufacturing a sputtering target is provided, which includes the steps of: forming a polycrystalline In-M-Zn oxide (M represents a metal chosen among aluminum, titanium, gallium, yttrium, zirconium, lanthanum, cesium, neodymium, and hafnium) powder by mixing, sintering, and grinding indium oxide, an oxide of the metal, and zinc oxide; forming a mixture by mixing the polycrystalline In-M-Zn oxide powder and a zinc oxide powder; forming a compact by compacting the mixture; and sintering the compact.
    Type: Application
    Filed: October 1, 2021
    Publication date: January 20, 2022
    Inventors: Shunpei YAMAZAKI, Masashi TSUBUKU, Masashi OOTA, Yoichi KUROSAWA, Noritaka ISHIHARA
  • Patent number: 11139166
    Abstract: A method for manufacturing a sputtering target with which an oxide semiconductor film with a small amount of defects can be formed is provided. Alternatively, an oxide semiconductor film with a small amount of defects is formed. A method for manufacturing a sputtering target is provided, which includes the steps of: forming a polycrystalline In-M-Zn oxide (M represents a metal chosen among aluminum, titanium, gallium, yttrium, zirconium, lanthanum, cesium, neodymium, and hafnium) powder by mixing, sintering, and grinding indium oxide, an oxide of the metal, and zinc oxide; forming a mixture by mixing the polycrystalline In-M-Zn oxide powder and a zinc oxide powder; forming a compact by compacting the mixture; and sintering the compact.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: October 5, 2021
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masashi Tsubuku, Masashi Oota, Yoichi Kurosawa, Noritaka Ishihara
  • Publication number: 20210280397
    Abstract: A plasma processing apparatus includes a chamber, a stage, a semiconductive ring, a power source, at least one conductive member, and a conductive layer. The chamber has a plasma processing space. The stage is disposed in the plasma processing space and has an electrostatic chuck. The semiconductive ring is disposed on the stage so as to surround a substrate placed on the stage, the semiconductive ring having a first face. The at least one conductive member is disposed in the stage and in electrical connection with the power source. The conductive layer is disposed on the first face of the semiconductive ring and in electrical connection with the at least one conductive member.
    Type: Application
    Filed: March 3, 2021
    Publication date: September 9, 2021
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Yoichi KUROSAWA, Shoichiro MATSUYAMA, Yasuharu SASAKI, Chishio KOSHIMIZU
  • Publication number: 20200144059
    Abstract: A method for manufacturing a sputtering target with which an oxide semiconductor film with a small amount of defects can be formed is provided. Alternatively, an oxide semiconductor film with a small amount of defects is formed. A method for manufacturing a sputtering target is provided, which includes the steps of: forming a polycrystalline In-M-Zn oxide (M represents a metal chosen among aluminum, titanium, gallium, yttrium, zirconium, lanthanum, cesium, neodymium, and hafnium) powder by mixing, sintering, and grinding indium oxide, an oxide of the metal, and zinc oxide; forming a mixture by mixing the polycrystalline In-M-Zn oxide powder and a zinc oxide powder; forming a compact by compacting the mixture; and sintering the compact.
    Type: Application
    Filed: December 30, 2019
    Publication date: May 7, 2020
    Inventors: Shunpei YAMAZAKI, Masashi TSUBUKU, Masashi OOTA, Yoichi KUROSAWA, Noritaka ISHIHARA
  • Publication number: 20200035711
    Abstract: To provide a method for manufacturing a semiconductor device including an oxide semiconductor film having conductivity, or a method for manufacturing a semiconductor device including an oxide semiconductor film having a light-transmitting property and conductivity. The method for manufacturing a semiconductor device includes the steps of forming an oxide semiconductor film over a first insulating film, performing first heat treatment in an atmosphere where oxygen contained in the oxide semiconductor film is released, and performing second heat treatment in a hydrogen-containing atmosphere, so that an oxide semiconductor film having conductivity is formed.
    Type: Application
    Filed: October 7, 2019
    Publication date: January 30, 2020
    Inventors: Masashi OOTA, Noritaka ISHIHARA, Motoki NAKASHIMA, Yoichi KUROSAWA, Shunpei YAMAZAKI, Yasuharu HOSAKA, Toshimitsu OBONAI, Junichi KOEZUKA
  • Patent number: 10522347
    Abstract: A method for manufacturing a sputtering target with which an oxide semiconductor film with a small amount of defects can be formed is provided. Alternatively, an oxide semiconductor film with a small amount of defects is formed. A method for manufacturing a sputtering target is provided, which includes the steps of: forming a polycrystalline In-M-Zn oxide (M represents a metal chosen among aluminum, titanium, gallium, yttrium, zirconium, lanthanum, cesium, neodymium, and hafnium) powder by mixing, sintering, and grinding indium oxide, an oxide of the metal, and zinc oxide; forming a mixture by mixing the polycrystalline In-M-Zn oxide powder and a zinc oxide powder; forming a compact by compacting the mixture; and sintering the compact.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: December 31, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masashi Tsubuku, Masashi Oota, Yoichi Kurosawa, Noritaka Ishihara
  • Patent number: 9806201
    Abstract: A method for forming an oxide that can be used as a semiconductor of a transistor or the like is provided. In particular, a method for forming an oxide with fewer defects such as grain boundaries is provided. One embodiment of the present invention is a semiconductor device including an oxide semiconductor, an insulator, and a conductor. The oxide semiconductor includes a region overlapping with the conductor with the insulator therebetween. The oxide semiconductor includes a crystal grain with an equivalent circle diameter of 1 nm or more and a crystal grain with an equivalent circle diameter less than 1 nm.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: October 31, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yoshinori Yamada, Yusuke Nonaka, Masashi Oota, Yoichi Kurosawa, Noritaka Ishihara, Takashi Hamada, Mitsuhiro Ichijo, Yuji Egi
  • Publication number: 20170178904
    Abstract: A method for manufacturing a sputtering target with which an oxide semiconductor film with a small amount of defects can be formed is provided. Alternatively, an oxide semiconductor film with a small amount of defects is formed. A method for manufacturing a sputtering target is provided, which includes the steps of: forming a polycrystalline In-M-Zn oxide (M represents a metal chosen among aluminum, titanium, gallium, yttrium, zirconium, lanthanum, cesium, neodymium, and hafnium) powder by mixing, sintering, and grinding indium oxide, an oxide of the metal, and zinc oxide; forming a mixture by mixing the polycrystalline In-M-Zn oxide powder and a zinc oxide powder; forming a compact by compacting the mixture; and sintering the compact.
    Type: Application
    Filed: March 7, 2017
    Publication date: June 22, 2017
    Inventors: Shunpei YAMAZAKI, Masashi TSUBUKU, Masashi OOTA, Yoichi KUROSAWA, Noritaka ISHIHARA
  • Publication number: 20160343733
    Abstract: To provide a method for manufacturing a semiconductor device including an oxide semiconductor film having conductivity, or a method for manufacturing a semiconductor device including an oxide semiconductor film having a light-transmitting property and conductivity. The method for manufacturing a semiconductor device includes the steps of forming an oxide semiconductor film over a first insulating film, performing first heat treatment in an atmosphere where oxygen contained in the oxide semiconductor film is released, and performing second heat treatment in a hydrogen-containing atmosphere, so that an oxide semiconductor film having conductivity is formed.
    Type: Application
    Filed: August 2, 2016
    Publication date: November 24, 2016
    Inventors: Masashi OOTA, Noritaka ISHIHARA, Motoki NAKASHIMA, Yoichi KUROSAWA, Shunpei YAMAZAKI, Yasuharu HOSAKA, Toshimitsu OBONAI, Junichi KOEZUKA
  • Patent number: 9437428
    Abstract: To provide a method for manufacturing a semiconductor device including an oxide semiconductor film having conductivity, or a method for manufacturing a semiconductor device including an oxide semiconductor film having a light-transmitting property and conductivity. The method for manufacturing a semiconductor device includes the steps of forming an oxide semiconductor film over a first insulating film, performing first heat treatment in an atmosphere where oxygen contained in the oxide semiconductor film is released, and performing second heat treatment in a hydrogen-containing atmosphere, so that an oxide semiconductor film having conductivity is formed.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: September 6, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masashi Oota, Noritaka Ishihara, Motoki Nakashima, Yoichi Kurosawa, Shunpei Yamazaki, Yasuharu Hosaka, Toshimitsu Obonai, Junichi Koezuka
  • Publication number: 20160160342
    Abstract: A method for manufacturing a sputtering target with which an oxide semiconductor film with a small amount of defects can be formed is provided. Alternatively, an oxide semiconductor film with a small amount of defects is formed. A method for manufacturing a sputtering target is provided, which includes the steps of: forming a polycrystalline In-M-Zn oxide (M represents a metal chosen among aluminum, titanium, gallium, yttrium, zirconium, lanthanum, cesium, neodymium, and hafnium) powder by mixing, sintering, and grinding indium oxide, an oxide of the metal, and zinc oxide; forming a mixture by mixing the polycrystalline In-M-Zn oxide powder and a zinc oxide powder; forming a compact by compacting the mixture; and sintering the compact.
    Type: Application
    Filed: January 26, 2016
    Publication date: June 9, 2016
    Inventors: Shunpei YAMAZAKI, Masashi TSUBUKU, Masashi OOTA, Yoichi KUROSAWA, Noritaka ISHIHARA
  • Patent number: 9267199
    Abstract: A method for manufacturing a sputtering target with which an oxide semiconductor film with a small amount of defects can be formed is provided. Alternatively, an oxide semiconductor film with a small amount of defects is formed. A method for manufacturing a sputtering target is provided, which includes the steps of: forming a polycrystalline In-M-Zn oxide (M represents a metal chosen among aluminum, titanium, gallium, yttrium, zirconium, lanthanum, cesium, neodymium, and hafnium) powder by mixing, sintering, and grinding indium oxide, an oxide of the metal, and zinc oxide; forming a mixture by mixing the polycrystalline In-M-Zn oxide powder and a zinc oxide powder; forming a compact by compacting the mixture; and sintering the compact.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: February 23, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masashi Tsubuku, Masashi Oota, Yoichi Kurosawa, Noritaka Ishihara
  • Publication number: 20150329371
    Abstract: The oxide includes indium, an element M, and zinc. The oxide includes a first region and a second region. A peak of diffraction intensity derived from a crystal structure is not observed in the first region using X-ray. An electron diffraction pattern including a third region with high luminance in a ring pattern and a spot in the third region is observed by transmission of an electron beam having a probe diameter of 0.3 nm or more and 3 nm or less through the second region. The oxide includes a crystal part when being observed with a transmission electron microscope.
    Type: Application
    Filed: March 18, 2015
    Publication date: November 19, 2015
    Inventors: Yoichi KUROSAWA, Masashi OOTA, Shunpei YAMAZAKI
  • Publication number: 20150255534
    Abstract: A method for forming an oxide that can be used as a semiconductor of a transistor or the like is provided. In particular, a method for forming an oxide with fewer defects such as grain boundaries is provided. One embodiment of the present invention is a semiconductor device including an oxide semiconductor, an insulator, and a conductor. The oxide semiconductor includes a region overlapping with the conductor with the insulator therebetween. The oxide semiconductor includes a crystal grain with an equivalent circle diameter of 1 nm or more and a crystal grain with an equivalent circle diameter less than 1 nm.
    Type: Application
    Filed: March 3, 2015
    Publication date: September 10, 2015
    Inventors: Shunpei YAMAZAKI, Yoshinori YAMADA, Yusuke NONAKA, Masashi OOTA, Yoichi KUROSAWA, Noritaka ISHIHARA, Takashi HAMADA, Mitsuhiro ICHIJO, Yuji EGI
  • Publication number: 20150155169
    Abstract: To provide a method for manufacturing a semiconductor device including an oxide semiconductor film having conductivity, or a method for manufacturing a semiconductor device including an oxide semiconductor film having a light-transmitting property and conductivity. The method for manufacturing a semiconductor device includes the steps of forming an oxide semiconductor film over a first insulating film, performing first heat treatment in an atmosphere where oxygen contained in the oxide semiconductor film is released, and performing second heat treatment in a hydrogen-containing atmosphere, so that an oxide semiconductor film having conductivity is formed.
    Type: Application
    Filed: November 24, 2014
    Publication date: June 4, 2015
    Inventors: Masashi OOTA, Noritaka ISHIHARA, Motoki NAKASHIMA, Yoichi KUROSAWA, Shunpei YAMAZAKI, Yasuharu HOSAKA, Toshimitsu OBONAI, Junichi KOEZUKA
  • Publication number: 20140241978
    Abstract: A method for manufacturing a sputtering target with which an oxide semiconductor film with a small amount of defects can be formed is provided. Alternatively, an oxide semiconductor film with a small amount of defects is formed. A method for manufacturing a sputtering target is provided, which includes the steps of: forming a polycrystalline In-M-Zn oxide (M represents a metal chosen among aluminum, titanium, gallium, yttrium, zirconium, lanthanum, cesium, neodymium, and hafnium) powder by mixing, sintering, and grinding indium oxide, an oxide of the metal, and zinc oxide; forming a mixture by mixing the polycrystalline In-M-Zn oxide powder and a zinc oxide powder; forming a compact by compacting the mixture; and sintering the compact.
    Type: Application
    Filed: February 24, 2014
    Publication date: August 28, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei YAMAZAKI, Masashi TSUBUKU, Masashi OOTA, Yoichi KUROSAWA, Noritaka ISHIHARA