Patents by Inventor Yoichi Sasaki

Yoichi Sasaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060103795
    Abstract: A normally-white twisted-nematic mode LCD device includes a first optical compensation film between a light-incident-side polarization film and an LC cell, and a second optical compensation film between a light-emitting-side polarization film and the LC cell. The optical axis of the first (second) optical compensation film projected onto the substrate surface is substantially parallel to the longer axis of an equivalent refractive index ellipsoid of a residual retardation of the LC layer in the vicinity of a light-incident-side (light-emitting-side) substrate upon display of black color.
    Type: Application
    Filed: November 16, 2005
    Publication date: May 18, 2006
    Inventors: Hidenori Ikeno, Yoichi Sasaki
  • Publication number: 20060103797
    Abstract: A normally-white twisted-nematic-mode LCD device has first and second optical compensation films for compensating the retardation of an LC layer sandwiched between a pair of substrates. The LC layer is applied with an applied voltage Vw having a relation with respect to the threshold voltage Vth of the LC and a pre-tilt angle ? of the LC layer, as follows: Vw?Vth×exp(?0.235×?+7.36×10?3). By using the applied voltage Vw depending on the pre-tilt angle ? increases the viewing angle which achieves a desired contrast ratio.
    Type: Application
    Filed: November 7, 2005
    Publication date: May 18, 2006
    Inventors: Yoichi Sasaki, Hidenori Ikeno
  • Publication number: 20050167844
    Abstract: A semiconductor device having improved adhesiveness between films composing an interlayer insulating film is presented by providing multilayered films in the interlayer insulating films having film density distribution, in which the film density is gradually changes. A SiOC film is deposited to a thickness of 300 nm via a plasma CVD process, in which a flow rate of trimethylsilane gas is stepwise increased. In this case, the film density of the deposited SiOC film is gradually decreased by stepwise increasing the flow rate of trimethylsilane gas. Since trimethylsilane contains methyl group, trimethylsilane has more bulky molecular structure in comparison with monosilane or the like. Thus, the film density is decreased by increasing the amount of trimethylsilane in the reactant gas.
    Type: Application
    Filed: December 8, 2004
    Publication date: August 4, 2005
    Applicant: NEC ELECTRONICS CORPORATION
    Inventors: Koichi Ohto, Tatsuya Usami, Yoichi Sasaki
  • Publication number: 20050170633
    Abstract: A semiconductor device 200 comprises a SiCN film 202 formed on a semiconductor substrate (not shown), a first SiOC film 204 formed thereon, a SiCN film 208 formed thereon, a second SiOC film 210 formed thereon, a SiO2 film 212 and a SiCN film 214 formed thereon. The first SiOC film 204 has a barrier metal layer 216 and via 218 formed therein, and the second SiOC film 210 has a barrier metal layer 220 and wiring metal layer 222 formed therein. Carbon content of the second SiOC film 210 is adjusted larger than that of the first SiOC film 204. This makes it possible to improve adhesiveness of the insulating interlayer with other insulating layers, while keeping a low dielectric constant of the insulating interlayer.
    Type: Application
    Filed: February 3, 2005
    Publication date: August 4, 2005
    Applicant: NEC ELECTRONICS CORPORATION
    Inventors: Yoichi Sasaki, Koichi Ohto, Noboru Morita, Tatsuya Usami, Hidenobu Miyamoto
  • Publication number: 20040185668
    Abstract: A method of fabricating a semiconductor device using a PECVD method is provided, which improves the adhesion strength of a deposited dielectric layer to an underlying layer and the reliability of the deposited dielectric layer. After placing a substrate in a chamber, a gas having a thermal conductivity of 0.1 W/mK or greater (e.g.. H2 or He) is introduced into the chamber, thereby contacting the gas with the substrate for stabilization of a temperature of the substrate. A desired dielectric layer is deposited on or over the substrate in the chamber using a PECVD method after the step of introducing the gas. As the desired dielectric layer, a dielectric layer having a low dielectric constant, such as a SiCH, SiCHN, or SiOCH layer, is preferably used.
    Type: Application
    Filed: January 30, 2004
    Publication date: September 23, 2004
    Applicant: NEC Electronics Corporation
    Inventors: Noboru Morita, Tatsuya Usami, Koichi Ohto, Sadayuki Ohnishi, Koji Arita, Ryohei Kitao, Yoichi Sasaki
  • Publication number: 20040183162
    Abstract: A semiconductor device has a semiconductor substrate, and a multi-layered wiring arrangement provided thereon. The multi-layered wring arrangement includes at least one insulating layer structure having a metal wiring pattern formed therein. The insulating layer structure includes a first SiOCH layer, a second SiOCH layer formed on the first SiOCH layer, and a silicon dioxide (SiO2) layer formed on the second SiOCH layer. The second SiOCH layer features a carbon (C) density lower than that of the first SiOCH layer, a hydrogen (H) density lower than that of the first SiOCH layer, and an oxygen (O) density higher than that of the first SiOCH layer.
    Type: Application
    Filed: January 29, 2004
    Publication date: September 23, 2004
    Applicant: NEC Electronics Corporation
    Inventors: Koichi Ohto, Tatsuya Usami, Noboru Morita, Sadayuki Ohnishi, Koji Arita, Ryohei Kitao, Yoichi Sasaki
  • Patent number: 6643312
    Abstract: An ArF excimer laser device and a fluoride laser device for exposure which is structured so that primary current that infuses energy from a magnetic pulse compression circuit to discharge electrodes via a peaking capacitor overlaps secondary current that infuses energy from the capacitor in the final stage of the magnetic pulse compression circuit to the discharge electrodes, the oscillation cycle of the secondary current is set longer than the oscillation cycle of the primary current, and a pulse of laser oscillation operation is effected by the initial half-cycle of the discharge oscillation current waveform that reverses the polarity of the primary current being overlapped by the secondary current and by at least two half-cycles continuing thereafter, as a result of which a high repetition rate, pulse stretch, line-narrowed ArF excimer laser device and fluorine laser device can be implemented at repetition rate exceeding 2 kHz.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: November 4, 2003
    Assignee: Ushiodenki Kabushiki Kaisha
    Inventors: Koji Kakizaki, Yoichi Sasaki
  • Patent number: 6636546
    Abstract: The present invention relates to an ArF excimer laser apparatus for lithography capable of stretching the laser pulse width even when the repetition rate exceeds 4 kHz and also relates to a KrF excimer laser apparatus and fluorine laser apparatus for lithography capable of stretching the laser pulse width even when the repetition rate exceeds 2 kHz.
    Type: Grant
    Filed: October 3, 2001
    Date of Patent: October 21, 2003
    Assignee: Ushio Denki Kabushiki Kaisya
    Inventors: Koji Kakizaki, Yoichi Sasaki
  • Publication number: 20030155657
    Abstract: A manufacturing method of a semiconductor device including a step of forming a via hole in an insulation layer including an organic low dielectric film, such as MSQ, SiC, and SiCN, and then embedding a wiring material in the via hole through a barrier metal. According to this method, a plasma treatment is performed after the via hole is formed and before the barrier metal is deposited, using a He/H2 gas capable of replacing groups (methyl groups) made of organic constituents and covering the surface of the exposed organic low dielectric film (MSQ) with hydrogen, or a He gas capable decomposing the groups (methyl groups) without removing organic low dielectric molecules. As a result, the surface of the low dielectric film (MSQ) is reformed to be hydrophilic and adhesion to the barrier metal is hence improved, thereby making it possible to prevent the occurrence of separation of the barrier metal and scratches.
    Type: Application
    Filed: February 13, 2003
    Publication date: August 21, 2003
    Applicant: NEC ELECTRONICS CORPORATION
    Inventors: Takashi Tonegawa, Koji Arita, Tatsuya Usami, Noboru Morita, Koichi Ohto, Yoichi Sasaki, Sadayuki Ohnishi, Ryohei Kitao
  • Publication number: 20020071469
    Abstract: The present invention relates to an ArF excimer laser apparatus for lithography capable of stretching the laser pulse width even when the repetition rate exceeds 4 kHz and also relates to a KrF excimer laser apparatus and fluorine laser apparatus for lithography capable of stretching the laser pulse width even when the repetition rate exceeds 2 kHz.
    Type: Application
    Filed: October 3, 2001
    Publication date: June 13, 2002
    Inventors: Koji Kakizaki, Yoichi Sasaki
  • Publication number: 20010004371
    Abstract: An ArF excimer laser device and a fluoride laser device for exposure which is structured so that primary current that infuses energy from a magnetic pulse compression circuit to discharge electrodes via a peaking capacitor overlaps secondary current that infuses energy from the capacitor in the final stage of the magnetic pulse compression circuit to the discharge electrodes, the oscillation cycle of the secondary current is set longer than the oscillation cycle of the primary current, and a pulse of laser oscillation operation is effected by the initial half-cycle of the discharge oscillation current waveform that reverses the polarity of the primary current being overlapped by the secondary current and by at least two half-cycles continuing thereafter, as a result of which a high repetition rate, pulse stretch, line-narrowed ArF excimer laser device and fluorine laser device can be implemented at repetition rate exceeding 2 kHz.
    Type: Application
    Filed: December 21, 2000
    Publication date: June 21, 2001
    Inventors: Koji Kakizaki, Yoichi Sasaki