Patents by Inventor Yoichiro Nakanishi

Yoichiro Nakanishi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9650294
    Abstract: This burned cement clinker is a burned cement clinker including at least one selected from the group consisting of fluorine, sulfur, chlorine and bromine, and at least one metallic element(s) selected from the group consisting of elements in groups 3 through 12 of the periodic table. Preferably, the amount of fluorine is within a range from 300 to 750 mg/kg, the amount of sulfur (expressed in terms of SO3) is within a range from 1.5 to 3.0% by mass, the amount of at least one chlorine equivalent(s) selected from the group consisting of chlorine and bromine is within a range from 150 to 350 mg/kg, and the amount of at least one metallic element selected from the group consisting of elements in groups 3 through 12 of the periodic table is within a range from 0.2 to 0.8% by mass.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: May 16, 2017
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Makio Yamashita, Yoichiro Nakanishi, Hisanobu Tanaka
  • Patent number: 9598312
    Abstract: Provided is a method for controlling a free lime content of a clinker by regulating the free lime content. Here the amount of sulfur trioxide resulting from fuel and the used amount of a fluorine-based mineralizer are regulated using the following Formulas (1) to (3), thereby controlling the free lime content (f.CaO) of the clinker. f.CaO=0.29×e(0.65×A)(A=a×SO3+b)??(1) a=0.0001×F+9.2×t?0.18×HM?9.2??(2) b=?0.0005×F?32.8×t?2.9×HM+28.4??(3) SO3 is an amount of sulfur trioxide in the clinker; a is a coefficient satisfying Formula (2); b is a coefficient satisfying Formula (3); F is an amount of fluorine in the clinker; when a burning temperature is X° C., t=X/1450; and HM is a hydraulic modulus.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: March 21, 2017
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Yuuki Ninomiya, Hisanobu Tanaka, Makio Yamashita, Yoichiro Nakanishi
  • Publication number: 20150321956
    Abstract: Provided is a method for controlling a free lime content of a clinker by regulating the free lime content. Here the amount of sulfur trioxide resulting from fuel and the used amount of a fluorine-based mineralizer are regulated using the following Formulas (1) to (3), thereby controlling the free lime content (f.CaO) of the clinker. f.CaO=0.29×e0.65×A)(A=a×SO3+b)??(1) a=0.0001×F+9.2×t?0.18×HM?9.2??(2) b=?0.0005×F?32.8×t?2.9×HM+28.4??(3) SO3 is an amount of sulfur trioxide in the clinker; a is a coefficient satisfying Formula (2); b is a coefficient satisfying Formula (3); F is an amount of fluorine in the clinker; when a burning temperature is X° C., t=X/1450; and HM is a hydraulic modulus.
    Type: Application
    Filed: March 8, 2013
    Publication date: November 12, 2015
    Inventors: Yuuki Ninomiya, Hisanobu Tanaka, Makio Yamashita, Yoichiro Nakanishi
  • Publication number: 20130000524
    Abstract: This burned cement clinker is a burned cement clinker including at least one selected from the group consisting of fluorine, sulfur, chlorine and bromine, and at least one metallic element(s) selected from the group consisting of elements in groups 3 through 12 of the periodic table. Preferably, the amount of fluorine is within a range from 300 to 750 mg/kg, the amount of sulfur (expressed in terms of SO3) is within a range from 1.5 to 3.0% by mass, the amount of at least one chlorine equivalent(s) selected from the group consisting of chlorine and bromine is within a range from 150 to 350 mg/kg, and the amount of at least one metallic element selected from the group consisting of elements in groups 3 through 12 of the periodic table is within a range from 0.2 to 0.8% by mass.
    Type: Application
    Filed: March 11, 2011
    Publication date: January 3, 2013
    Inventors: Makio Yamashita, Yoichiro Nakanishi, Hisanobu Tanaka
  • Patent number: 5962083
    Abstract: A method of depositing a thin film on a polymer substrate by plasma CVD comprises applying a magnetic field to a plasma generating chamber by activating a magnetic coil placed in the circumference of the plasma generating chamber, the plasma generating chamber having an inlet; introducing a microwave into the plasma generating chamber; introducing an upstream gas into the plasma generating chamber wherein an ECR plasma is generated; vaporizing a feed gas wherein a supply gas is generated and carries the ECR plasma; passing said ECR plasma through a mesh provided between the inlet and a polymer substrate located downstream of the inlet; and depositing a film on the surface of the polymer substrate.
    Type: Grant
    Filed: June 13, 1996
    Date of Patent: October 5, 1999
    Assignee: Suzuki Motor Corporation
    Inventors: Yoshinori Hatanaka, Yoichiro Nakanishi, Sunil Wickramanayaka, Keiichiro Sano, Masaya Nomura, Shigekazu Hayashi
  • Patent number: 5837644
    Abstract: A surface hydrophobic active carbon is disclosed which has undergone a treatment with trimethyl chlorosilane and exhibits a silicon concentration on the surface thereof, Si.sub.2p /C.sub.1s, in the range of 0.005-0.03 as determined by X-ray photoelectron spectroscopy and a humidity for starting adsorption of water in the range of 45-60% as determined from the equilibrium adsorbed water content curve, and a method for the production of a surface hydrophobic active carbon is disclosed which comprises exposing active carbon to trimethyl chlorosilane, allowing the exposure to continue for a prescribed length of time, evacuating the ambience, thereby removing excess amount of trimethyl chlorosilane, and subsequently heating the active carbon under a vacuum.
    Type: Grant
    Filed: September 13, 1996
    Date of Patent: November 17, 1998
    Assignees: Agency of Industrial Science & Technology, Ministry of International Trade & Industry
    Inventors: Yoichiro Nakanishi, Takako Honjoh, Kuniaki Honjo