Patents by Inventor Yoji Kase

Yoji Kase has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8580012
    Abstract: An asymmetric hollow fiber gas separation membrane obtained by subjecting an asymmetric hollow fiber polyimide membrane to a heat treatment having a maximum temperature of from 350 to 450° C., wherein the asymmetric hollow fiber polyimide membrane is formed with a polyimide essentially having a repeating unit represented by a general formula (1); is excellent in a solvent resistance and a thermal stability, and as well has such a mechanical strength that a tensile elongation at break is not less than 10% as a hollow fiber membrane.
    Type: Grant
    Filed: January 19, 2009
    Date of Patent: November 12, 2013
    Assignee: Ube Industries, Ltd.
    Inventors: Harutoshi Hoshino, Tomonori Kanougi, Toshimune Yoshinaga, Yoji Kase, Kenji Fukunaga
  • Patent number: 8409325
    Abstract: There is disclosed an asymmetric gas separation membrane exhibiting both improved gas separation performance and improved mechanical properties, which is made of a soluble aromatic polyimide comprised of a repeating unit represented by general formula (1): wherein B in general formula (1) B comprises 10 to 70 mol % of tetravalent unit B1 represented by general formula (B1) and 90 to 30 mol % of tetravalent unit B2 represented by general formula (B2), and A in general formula (1) comprises 10 to 50 mol % of bivalent unit A1 represented by general formula (A1a) or the like and 90 to 30 mol % of bivalent unit A2 represented by general formula (A2a) or the like.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: April 2, 2013
    Assignee: Ube Industries, Ltd.
    Inventors: Toshimune Yoshinaga, Makoto Nakamura, Tomonori Kanougi, Yoji Kase, Kenji Fukunaga
  • Patent number: 8394176
    Abstract: Disclosed are a gas separation membrane and a gas separation method in which at least one species of organic vapor is separated and recovered from an organic vapor mixture using the gas separation membrane. The gas separation membrane is made of an aromatic polyimide composed of a tetracarboxylic acid component consisting of an aromatic ring-containing tetracarboxylic acid and a diamine component comprising 10 to 90 mol % of a combination of (B1) 3,4?-diaminodiphenyl ether and (B2) 4,4?-diaminodiphenyl ether at a B1 to B2 molar ratio, B1/B2, ranging from 10/1 to 1/10, and 10 to 90 mol % of other aromatic diamine.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: March 12, 2013
    Assignee: Ube Industries, Ltd.
    Inventors: Tomonori Kanougi, Harutoshi Hoshino, Toshimune Yoshinaga, Yoji Kase, Kenji Fukunaga
  • Publication number: 20110232484
    Abstract: There is disclosed an asymmetric gas separation membrane exhibiting both improved gas separation performance and improved mechanical properties, which is made of a soluble aromatic polyimide comprised of a repeating unit represented by general formula (1): wherein B in general formula (1) B comprises 10 to 70 mol % of tetravalent unit B1 represented by general formula (B1) and 90 to 30 mol % of tetravalent unit B2 represented by general formula (B2), and A in general formula (1) comprises 10 to 50 mol % of bivalent unit A1 represented by general formula (A1a) or the like and 90 to 30 mol % of bivalent unit A2 represented by general formula (A2a) or the like.
    Type: Application
    Filed: September 30, 2009
    Publication date: September 29, 2011
    Applicant: UBE INDUSTRIES, LTD.
    Inventors: Toshimune Yoshinaga, Makoto Nakamura, Tomonori Kanougi, Yoji Kase, Kenji Fukunaga
  • Publication number: 20110048229
    Abstract: An asymmetric hollow fiber gas separation membrane obtained by subjecting an asymmetric hollow fiber polyimide membrane to a heat treatment having a maximum temperature of from 350 to 450° C., wherein the asymmetric hollow fiber polyimide membrane is formed with a polyimide essentially having a repeating unit represented by a general formula (1); is excellent in a solvent resistance and a thermal stability, and as well has such a mechanical strength that a tensile elongation at break is not less than 10% as a hollow fiber membrane.
    Type: Application
    Filed: January 19, 2009
    Publication date: March 3, 2011
    Applicant: UBE Industries, Ltd.
    Inventors: Harutoshi Hoshino, Tomonori Kanougi, Toshimune Yoshinaga, Yoji Kase, Kenji Fukunaga
  • Publication number: 20110000367
    Abstract: Disclosed are a gas separation membrane and a gas separation method in which at least one species of organic vapor is separated and recovered from an organic vapor mixture using the gas separation membrane. The gas separation membrane is made of an aromatic polyimide composed of a tetracarboxylic acid component consisting of an aromatic ring-containing tetracarboxylic acid and a diamine component comprising 10 to 90 mol % of a combination of (B1) 3,4?-diaminodiphenyl ether and (B2) 4,4?-diaminodiphenyl ether at a B1 to B2 molar ratio, B1/B2, ranging from 10/1 to 1/10, and 10 to 90 mol % of other aromatic diamine.
    Type: Application
    Filed: February 4, 2009
    Publication date: January 6, 2011
    Applicant: UBE INDUSSTRIES, LTD.
    Inventors: Tomonori Kanougi, Harutoshi Hoshino, Toshimune Yoshinaga, Yoji Kase, Kenji Fukunaga
  • Patent number: 7833313
    Abstract: A process of producing an asymmetric membrane of multicomponent polyimide. The process includes the steps of (1) preparing a multicomponent polyimide blend solution by mixing a polyimide component A having a number-averaged polymerization index NA and a polyimide component B having a number-averaged polymerization index NB, wherein NA and NB satisfies equation 1: 2.35×NA?2.09<NB<450×NA?1.12??1 (2) subjecting the multicomponent polyimide blend solution to further polymerization and imidation reaction, and (3) causing a phase inversion in the resulting multicomponent polyimide blend solution to form an asymmetric membrane. The polyimide component A is raw materials of polyimide A containing a fluorine atom in the chemical structure thereof and/or a polymerization and imidation reaction product of the raw materials. The polyimide component B is raw materials of polyimide B and/or a polymerization and imidation reaction product of the raw materials.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: November 16, 2010
    Assignee: Ube Industries, Ltd.
    Inventors: Toshimune Yoshinaga, Kenji Fukunaga, Yoji Kase
  • Patent number: 7803214
    Abstract: The present invention relates to an asymmetric hollow-fiber gas separation membrane made of a polyimide having a specific repeating unit, an improved tensile elongation at break of 15% or more as a hollow-fiber membrane itself, an oxygen gas permeation rate (P?O2) of 4.0×10?5 cm3(STP)/cm2·sec·cmHg or more and a gas ratio of permeation rate of oxygen to nitrogen (P?O2/P?N2) of 4 or more that are measured at 50° C., a gas separation method and a gas separation membrane module using the asymmetric hollow-fiber gas separation membrane. In addition, the present invention relates to an asymmetric hollow-fiber gas separation membrane obtained by heat-treating the asymmetric hollow-fiber gas separation membrane at a maximum temperature of from 350 to 450° C. The asymmetric hollow-fiber gas separation membrane has sufficient mechanical strength even after the heat-treatment at a maximum temperature of from 350 to 450° C.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: September 28, 2010
    Assignee: UBE Industries, Ltd.
    Inventors: Yoji Kase, Toshimune Yoshinaga, Kenji Fukunaga, Harutoshi Hoshino
  • Publication number: 20100116131
    Abstract: A process of producing an asymmetric membrane of multicomponent polyimide. The process includes the steps of (1) preparing a multicomponent polyimide blend solution by mixing a polyimide component A having a number-averaged polymerization index NA and a polyimide component B having a number-averaged polymerization index NB, wherein NA and NB satisfies equation 1: 2.35×NA?2.09<NB<450×NA?1.12??1 (2) subjecting the multicomponent polyimide blend solution to further polymerization and imidation reaction, and (3) causing a phase inversion in the resulting multicomponent polyimide blend solution to form an asymmetric membrane. The polyimide component A is raw materials of polyimide A containing a fluorine atom in the chemical structure thereof and/or a polymerization and imidation reaction product of the raw materials. The polyimide component B is raw materials of polyimide B and/or a polymerization and imidation reaction product of the raw materials.
    Type: Application
    Filed: October 27, 2009
    Publication date: May 13, 2010
    Applicant: UBE INDUSTRIES, LTD.
    Inventors: Toshimune YOSHINAGA, Kenji FUKUNAGA, Yoji KASE
  • Patent number: 7628841
    Abstract: A process of producing an asymmetric membrane of multicomponent polyimide. The process includes the steps of (1) preparing a multicomponent polyimide blend solution by mixing a polyimide component A having a number-averaged polymerization index NA and a polyimide component B having a number-averaged polymerization index NB, wherein NA and NB satisfies equation 1: 2.35×NA?2.09<NB<450×NA?1.12??1 (2) subjecting the multicomponent polyimide blend solution to further polymerization and imidation reaction, and (3) causing a phase inversion in the resulting multicomponent polyimide blend solution to form an asymmetric membrane. The polyimide component A is raw materials of polyimide A containing a fluorine atom in the chemical structure thereof and/or a polymerization and imidation reaction product of the raw materials. The polyimide component B is raw materials of polyimide B and/or a polymerization and imidation reaction product of the raw materials.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: December 8, 2009
    Assignee: UBE Industries, Ltd.
    Inventors: Toshimune Yoshinaga, Kenji Fukunaga, Yoji Kase
  • Publication number: 20080017029
    Abstract: The present invention relates to an asymmetric hollow-fiber gas separation membrane made of a polyimide having a specific repeating unit, an improved tensile elongation at break of 15% or more as a hollow-fiber membrane itself, an oxygen gas permeation rate (P?O2) of 4.0×10?5 cm3 (STP)/cm2·sec·cmHg or more and a gas ratio of permeation rate of oxygen to nitrogen (P?O2/P?N2) of 4 or more that are measured at 50° C., a gas separation method and a gas separation membrane module using the asymmetric hollow-fiber gas separation membrane. In addition, the present invention relates to an asymmetric hollow-fiber gas separation membrane obtained by heat-treating the asymmetric hollow-fiber gas separation membrane at a maximum temperature of from 350 to 450° C. The asymmetric hollow-fiber gas separation membrane has sufficient mechanical strength even after the heat-treatment at a maximum temperature of from 350 to 450° C.
    Type: Application
    Filed: July 23, 2007
    Publication date: January 24, 2008
    Applicant: UBE INDUSTRIES, LTD.
    Inventors: Yoji Kase, Toshimune Yoshinaga, Kenji Fukunaga, Harutoshi Hoshino
  • Publication number: 20060231485
    Abstract: A process of producing an asymmetric membrane of multicomponent polyimide. The process includes the steps of (1) preparing a multicomponent polyimide blend solution by mixing a polyimide component A having a number-averaged polymerization index NA and a polyimide component B having a number-averaged polymerization index NB, wherein NA and NB satisfies equation 1: 2.35×NA?2.09<NB<450×NA?1.12??1 (2) subjecting the multicomponent polyimide blend solution to further polymerization and imidation reaction, and (3) causing a phase inversion in the resulting multicomponent polyimide blend solution to form an asymmetric membrane. The polyimide component A is raw materials of polyimide A containing a fluorine atom in the chemical structure thereof and/or a polymerization and imidation reaction product of the raw materials. The polyimide component B is raw materials of polyimide B and/or a polymerization and imidation reaction product of the raw materials.
    Type: Application
    Filed: January 20, 2006
    Publication date: October 19, 2006
    Inventors: Toshimune Yoshinaga, Kenji Fukunaga, Yoji Kase
  • Patent number: 6921428
    Abstract: A halide gas separating and collecting device for separating and collecting halide gas from mixed gas containing the halide gas, wherein at least first and second stage separating membrane modules are stacked in multiple stages. The method comprises: feeding the mixed gas to the inlet of the first stage separating membrane module, feeding the gas passed through the previous separating membrane module to the inlets of the second and subsequent stage separating membrane modules, recycling the gas unpassed through the second and subsequent stage separating membrane modules to the inlet of the first stage separating membrane module, and controlling the flow of gas unpassed through the first stage separating membrane module by a control valve connected to the unpassed gas outlet of the first stage separating membrane module, whereby the halide gas can be separated and collected as unpassed gas at a high density and a high collection rate.
    Type: Grant
    Filed: January 23, 2002
    Date of Patent: July 26, 2005
    Assignee: Ube Industries, Ltd.
    Inventors: Osamu Yamamoto, Masayuki Kinouchi, Naoki Takada, Yoji Kase, Masao Kikuchi
  • Publication number: 20040045432
    Abstract: A halide gas separating and collecting device for separating and collecting halide gas from mixed gas containing the halide gas, wherein at least first and second stage separating membrane modules are stacked in multiple stages. The method comprises: feeding the mixed gas to the inlet of the first stage separating membrane module, feeding the gas passed through the previous separating membrane module to the inlets of the second and subsequent stage separating membrane modules, recycling the gas unpassed through the second and subsequent stage separating membrane modules to the inlet of the first stage separating membrane module, and controlling the flow of gas unpassed through the first stage separating membrane module by a control valve connected to the unpassed gas outlet of the first stage separating membrane module, whereby the halide gas can be separated and collected as unpassed gas at a high density and a high collection rate.
    Type: Application
    Filed: July 14, 2003
    Publication date: March 11, 2004
    Inventors: Osamu Yamamoto, Masayuki Kinouchi, Naoki Takada, Yoji Kase, Masao Kikuchi