Patents by Inventor Yoji Takizawa

Yoji Takizawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230407458
    Abstract: A film formation apparatus includes: a chamber which an interior thereof can be made vacuum; a rotary table provided inside the chamber, holding a workpiece, and circulating and transporting the workpiece in a circular trajectory; a film formation unit including a target formed of film formation material and a plasma generator which turns sputtering gas introduced between the target and the rotary table into plasma, the film formation unit depositing by sputtering film formation material on the workpiece; a film processing unit processing the film deposited by the film formation unit on the workpiece; holding regions each holding the workpiece and provided in a circular film formation region facing the film formation unit and the film processing unit that is a region other than the rotation axis in the rotary table; and a heater provided in the holding regions.
    Type: Application
    Filed: June 20, 2023
    Publication date: December 21, 2023
    Applicant: SHIBAURA MECHATRONICS CORPORATION
    Inventors: Yoji TAKIZAWA, Masatoshi HIGUCHI
  • Patent number: 8506774
    Abstract: To provide a vacuum processing apparatus applicable to various manufacturing processes, by efficiently and highly reliably stacking films of various types and thicknesses and by downsizing the manufacturing apparatus by suppressing size increase of the apparatus due to increase of the number of film forming chambers caused by increase and complexity of process steps. A vacuum processing apparatus is provided with a plurality of film forming process parts which are provided with rotating transfer tables and film forming chambers. The rotating transfer tables form a transfer path for a work to be processed, in chambers which can be vacuum-exhausted. The film forming chambers are provided for depositing a film on the work to be processed which is arranged and transferred along a circumference which has a rotating shaft of the rotating transfer table as a center.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: August 13, 2013
    Assignee: Shibaura Mechatronics Corporation
    Inventors: Jiro Ikeda, Yoji Takizawa
  • Patent number: 8475870
    Abstract: A resin layer formation method and device for making a resin layer uniform on a substrate before lamination or on a substrate is provided. Adhesive is coated at an inner circumference side while rotating a substrate at low speed. A first adhesive layer is formed on the surface of the substrate by rotating at high speed. A step difference section is formed around a rotation center of the substrate by irradiating ultraviolet on an area in the inner circumference side of the first adhesive layer to hardening the area. Adhesive is coated at the rotation center side from the step difference section on the substrate, and a second adhesive layer is formed on the first adhesive layer by rotating the substrate at high speed. The first adhesive layer and the second adhesive layer are integrated to form a uniform adhesive layer.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: July 2, 2013
    Assignee: Shibaura Mechatronics Corporation
    Inventors: Tomokazu Ito, Hisashi Nishigaki, Tsukasa Kawakami, Haruka Narita, Yoji Takizawa, Takumi Hanada, Munenori Iwami
  • Patent number: 8220410
    Abstract: A resin layer formation method, resin layer formation device, disk and disk manufacturing method for making a resin layer uniform on a substrate before lamination or on a substrate to be coated by a simple procedure are provided. Adhesive A is coated at the inner circumference side while rotating a substrate P at low speed, a first adhesive layer AL1 is formed on the surface of the substrate P by rotating the substrate P at high speed, a step difference section H is formed around a rotation center of the substrate P by irradiating ultraviolet on an area in the inner circumference side of the first adhesive layer AL1 and hardening the area, the adhesive A is coated at the rotation center side from the step difference section H on the substrate P, and a second adhesive layer AL2 is formed on the first adhesive layer AL1 by rotating the substrate P at high speed. The first adhesive layer AL1 and the second adhesive layer AL2 are integrated to form a uniform adhesive layer B as a whole.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: July 17, 2012
    Assignee: Shibaura Mechatronics Corporation
    Inventors: Tomokazu Ito, Hisashi Nishigaki, Tsukasa Kawakami, Haruka Narita, Yoji Takizawa, Takumi Hanada, Munenori Iwami
  • Publication number: 20120076947
    Abstract: A resin layer formation method and device for making a resin layer uniform on a substrate before lamination or on a substrate is provided. Adhesive is coated at an inner circumference side while rotating a substrate at low speed. A first adhesive layer is formed on the surface of the substrate by rotating at high speed. A step difference section is formed around a rotation center of the substrate by irradiating ultraviolet on an area in the inner circumference side of the first adhesive layer to hardening the area. Adhesive is coated at the rotation center side from the step difference section on the substrate, and a second adhesive layer is formed on the first adhesive layer by rotating the substrate at high speed. The first adhesive layer and the second adhesive layer are integrated to form a uniform adhesive layer.
    Type: Application
    Filed: December 2, 2011
    Publication date: March 29, 2012
    Inventors: Tomokazu Ito, Hisashi Nishigaki, Tsukasa Kawakami, Haruka Narita, Yoji Takizawa, Takumi Hanada, Munenori Iwami
  • Patent number: 8088438
    Abstract: A resin layer formation method, resin layer formation device, disk and disk manufacturing method for making a resin layer uniform on a substrate before lamination or on a substrate to be coated by a simple procedure are provided. Adhesive A is coated at the inner circumference side while rotating a substrate P at low speed, a first adhesive layer AL1 is formed on the surface of the substrate P by rotating the substrate P at high speed, a step difference section H is formed around a rotation center of the substrate P by irradiating ultraviolet on an area in the inner circumference side of the first adhesive layer AL1 and hardening the area, the adhesive A is coated at the rotation center side from the step difference section H on the substrate P, and a second adhesive layer AL2 is formed on the first adhesive layer AL1 by rotating the substrate P at high speed. The first adhesive layer AL1 and the second adhesive layer AL2 are integrated to form a uniform adhesive layer B as a whole.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: January 3, 2012
    Assignee: Shibaura Mechatronics Corporation
    Inventors: Tomokazu Ito, Hisashi Nishigaki, Tsukasa Kawakami, Haruka Narita, Yoji Takizawa, Takumi Hanada, Munenori Iwami
  • Publication number: 20100275840
    Abstract: A resin layer formation method, resin layer formation device, disk and disk manufacturing method for making a resin layer uniform on a substrate before lamination or on a substrate to be coated by a simple procedure are provided. Adhesive A is coated at the inner circumference side while rotating a substrate P at low speed, a first adhesive layer AL1 is formed on the surface of the substrate P by rotating the substrate P at high speed, a step difference section H is formed around a rotation center of the substrate P by irradiating ultraviolet on an area in the inner circumference side of the first adhesive layer AL1 and hardening the area, the adhesive A is coated at the rotation center side from the step difference section H on the substrate P, and a second adhesive layer AL2 is formed on the first adhesive layer AL1 by rotating the substrate P at high speed. The first adhesive layer AL1 and the second adhesive layer AL2 are integrated to form a uniform adhesive layer B as a whole.
    Type: Application
    Filed: July 13, 2010
    Publication date: November 4, 2010
    Inventors: Tomokazu Ito, Hisashi Nishigaki, Tsukasa Kawakami, Haruka Narita, Yoji Takizawa, Takumi Hanada, Munenori Iwami
  • Publication number: 20100102044
    Abstract: A film cutting device and a film cutting method, in which smoke produced while a protective film is being cut by a laser along the outer and inner edges of a substrate can be prevented from adhering to the film and be efficiently exhausted, are provided. The device has a laser radiation device 6 for cutting a film 1 along the outer and inner edges of a disk by laser radiation, a first air intake unit 3 and a second air intake unit 4 for suctioning the smoke that is produced while the film is cut by laser radiation, and an adjusting unit 5 for adjusting air flow of the first air intake unit 3 to control the flow of smoke onto the surface of the film 1 corresponding to the disk. An incision is formed on the inside of the inner edge by the laser radiation device 6 before the film 1 is cut along the inner edge.
    Type: Application
    Filed: September 19, 2007
    Publication date: April 29, 2010
    Inventors: Yoji Takizawa, Hachiya Takeuchi, Shinichi Tezuka, Hisashi Nishigaki
  • Publication number: 20090294073
    Abstract: To provide a substrate processing apparatus capable of uniformly processing substrates without applying excessive force to the substrates and without being affected by the standing time. The substrate processing apparatus includes a holding portion 2 that holds the substrate 1 after molding, and a flow rectification portion 3 disposed near the substrate 1 that is held by the holding portion 2. The flow rectification portion 3 includes a facing portion 33 opposed to and near to one side of the substrate 1, an inlet portion 32 for introducing cooling gas G between the facing surface 33 and the substrate 1, and a drive unit that rotates the facing portion 33. Fins 34 are formed in the facing portion 33.
    Type: Application
    Filed: February 22, 2007
    Publication date: December 3, 2009
    Inventors: Yoji Takizawa, Hisashi Nishigaki
  • Publication number: 20080251376
    Abstract: To provide a vacuum treatment device capable of reducing the occurrence of the tilt and deformation of treated materials by suppressing the heating of a substrate by continuous spattering in a vacuum.
    Type: Application
    Filed: May 16, 2005
    Publication date: October 16, 2008
    Applicant: SHIBAURA MECHATRONICS CORPORATION
    Inventors: Yoji Takizawa, Jiro Ikeda
  • Publication number: 20080206570
    Abstract: A resin layer formation method, resin layer formation device, disk and disk manufacturing method for making a resin layer uniform on a substrate before lamination or on a substrate to be coated by a simple procedure are provided. Adhesive A is coated at the inner circumference side while rotating a substrate P at low speed, a first adhesive layer AL1 is formed on the surface of the substrate P by rotating the substrate P at high speed, a step difference section H is formed around a rotation center of the substrate P by irradiating ultraviolet on an area in the inner circumference side of the first adhesive layer AL1 and hardening the area, the adhesive A is coated at the rotation center side from the step difference section H on the substrate P, and a second adhesive layer AL2 is formed on the first adhesive layer AL1 by rotating the substrate P at high speed. The first adhesive layer AL1 and the second adhesive layer AL2 are integrated to form a uniform adhesive layer B as a whole.
    Type: Application
    Filed: June 1, 2005
    Publication date: August 28, 2008
    Inventors: Tomokazu Ito, Hisashi Nishigaki, Tsukasa Kawakami, Haruka Narita, Yoji Takizawa, Takumi Hanada, Munenori Iwami
  • Publication number: 20080029023
    Abstract: To provide a vacuum processing apparatus applicable to various manufacturing processes, by efficiently and highly reliably stacking films of various types and thicknesses and by downsizing the manufacturing apparatus by suppressing size increase of the apparatus due to increase of the number of film forming chambers caused by increase and complexity of process steps. A vacuum processing apparatus is provided with a plurality of film forming process parts which are provided with rotating transfer tables and film forming chambers. The rotating transfer tables form a transfer path for a work to be processed, in chambers which can be vacuum-exhausted. The film forming chambers are provided for depositing a film on the work to be processed which is arranged and transferred along a circumference which has a rotating shaft of the rotating transfer table as a center.
    Type: Application
    Filed: May 16, 2005
    Publication date: February 7, 2008
    Applicant: Shibaura Mechatronics Corporation
    Inventors: Jiro Ikeda, Yoji Takizawa
  • Patent number: 5914875
    Abstract: Determined results of which measured data of a plant is normal/abnormal are mapped to a plant model in an abstract function level hierarchically represented with flow structures of mass/energy and goals to be accomplished by the respective flow structures so as to detect a failure propagation network. In the failure propagation network, a flow structure at the lowest hierarchical level of a network with a top goal of the highest priority is selected as an object to be diagnosed first. In other words, flow structures that are functionally important and close to the origin of anomaly are preferentially diagnosed. The diagnosis for flow structures detects abnormal elements through hypothesis and test. The abnormal element are evaluated with respective mass/energy balances or the like. With respect to the evaluated result, the origin of failure is inferred based on the rule of experience. When the abnormal element has a detailed flow structure, it is diagnosed.
    Type: Grant
    Filed: January 10, 1997
    Date of Patent: June 22, 1999
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazuo Monta, Yoji Takizawa