Patents by Inventor Yoke Hor Phua

Yoke Hor Phua has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220093479
    Abstract: A semiconductor device has a plurality of semiconductor die. A first prefabricated insulating film is disposed over the semiconductor die. A conductive layer is formed over the first prefabricated insulating film. An interconnect structure is formed over the semiconductor die and first prefabricated insulating film. The first prefabricated insulating film is laminated over the semiconductor die. The first prefabricated insulating film includes glass cloth, glass fiber, or glass fillers. The semiconductor die is embedded within the first prefabricated insulating film with the first prefabricated insulating film covering first and side surfaces of the semiconductor die. The interconnect structure is formed over a second surface of the semiconductor die opposite the first surface. A portion of the first prefabricated insulating film is removed after disposing the first prefabricated insulating film over the semiconductor die.
    Type: Application
    Filed: December 7, 2021
    Publication date: March 24, 2022
    Applicant: JCET Semiconductor (Shaoxing) Co., Ltd.
    Inventors: See Chian Lim, Teck Tiong Tan, Yung Kuan Hsiao, Ching Meng Fang, Yoke Hor Phua, Bartholomew Liao
  • Patent number: 11227809
    Abstract: A semiconductor device has a plurality of semiconductor die. A first prefabricated insulating film is disposed over the semiconductor die. A conductive layer is formed over the first prefabricated insulating film. An interconnect structure is formed over the semiconductor die and first prefabricated insulating film. The first prefabricated insulating film is laminated over the semiconductor die. The first prefabricated insulating film includes glass cloth, glass fiber, or glass fillers. The semiconductor die is embedded within the first prefabricated insulating film with the first prefabricated insulating film covering first and side surfaces of the semiconductor die. The interconnect structure is formed over a second surface of the semiconductor die opposite the first surface. A portion of the first prefabricated insulating film is removed after disposing the first prefabricated insulating film over the semiconductor die.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: January 18, 2022
    Inventors: See Chian Lim, Teck Tiong Tan, Yung Kuan Hsiao, Ching Meng Fang, Yoke Hor Phua, Bartholomew Liao
  • Patent number: 10916482
    Abstract: A semiconductor wafer has a plurality of semiconductor die distributed over a surface area. The semiconductor die are singulated from the semiconductor wafer. The semiconductor die are mounted to a carrier to form a reconstituted semiconductor wafer. The carrier has a surface area 10-50% larger than the surface area of the semiconductor wafer. The number of semiconductor die mounted to the carrier is greater than a number of semiconductor die singulated from the semiconductor wafer. The reconstituted wafer is mounted within a chase mold. The chase mold is closed with the semiconductor die disposed within a cavity of the chase mold. An encapsulant is dispersed around the semiconductor die within the cavity under temperature and pressure. The encapsulant can be injected into the cavity of the chase mold. The reconstituted wafer is removed from the chase mold. An interconnect structure is formed over the reconstituted wafer.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: February 9, 2021
    Inventors: Yoke Hor Phua, Yung Kuan Hsiao
  • Publication number: 20170186660
    Abstract: A semiconductor device has a plurality of semiconductor die. A first prefabricated insulating film is disposed over the semiconductor die. A conductive layer is formed over the first prefabricated insulating film. An interconnect structure is formed over the semiconductor die and first prefabricated insulating film. The first prefabricated insulating film is laminated over the semiconductor die. The first prefabricated insulating film includes glass cloth, glass fiber, or glass fillers. The semiconductor die is embedded within the first prefabricated insulating film with the first prefabricated insulating film covering first and side surfaces of the semiconductor die. The interconnect structure is formed over a second surface of the semiconductor die opposite the first surface. A portion of the first prefabricated insulating film is removed after disposing the first prefabricated insulating film over the semiconductor die.
    Type: Application
    Filed: March 13, 2017
    Publication date: June 29, 2017
    Applicant: STATS ChipPAC Pte. Ltd.
    Inventors: See Chian Lim, Teck Tiong Tan, Yung Kuan Hsiao, Ching Meng Fang, Yoke Hor Phua, Bartholomew Liao
  • Patent number: 9627338
    Abstract: A semiconductor device has a plurality of semiconductor die. A first prefabricated insulating film is disposed over the semiconductor die. A conductive layer is formed over the first prefabricated insulating film. An interconnect structure is formed over the semiconductor die and first prefabricated insulating film. The first prefabricated insulating film is laminated over the semiconductor die. The first prefabricated insulating film includes glass cloth, glass fiber, or glass fillers. The semiconductor die is embedded within the first prefabricated insulating film with the first prefabricated insulating film covering first and side surfaces of the semiconductor die. The interconnect structure is formed over a second surface of the semiconductor die opposite the first surface. A portion of the first prefabricated insulating film is removed after disposing the first prefabricated insulating film over the semiconductor die.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: April 18, 2017
    Assignee: STATS ChipPAC Pte. Ltd.
    Inventors: See Chian Lim, Teck Tiong Tan, Yung Kuan Hsiao, Ching Meng Fang, Yoke Hor Phua, Bartholomew Liao
  • Publication number: 20140252641
    Abstract: A semiconductor device has a plurality of semiconductor die. A first prefabricated insulating film is disposed over the semiconductor die. A conductive layer is formed over the first prefabricated insulating film. An interconnect structure is formed over the semiconductor die and first prefabricated insulating film. The first prefabricated insulating film is laminated over the semiconductor die. The first prefabricated insulating film includes glass cloth, glass fiber, or glass fillers. The semiconductor die is embedded within the first prefabricated insulating film with the first prefabricated insulating film covering first and side surfaces of the semiconductor die. The interconnect structure is formed over a second surface of the semiconductor die opposite the first surface. A portion of the first prefabricated insulating film is removed after disposing the first prefabricated insulating film over the semiconductor die.
    Type: Application
    Filed: February 21, 2014
    Publication date: September 11, 2014
    Applicant: STATS ChipPAC, Ltd.
    Inventors: See Chian Lim, Teck Tiong Tan, Yung Kuan Hsiao, Ching Meng Fang, Yoke Hor Phua, Bartholomew Liao
  • Publication number: 20130292673
    Abstract: A semiconductor wafer has a plurality of semiconductor die distributed over a surface area. The semiconductor die are singulated from the semiconductor wafer. The semiconductor die are mounted to a carrier to form a reconstituted semiconductor wafer. The carrier has a surface area 10-50% larger than the surface area of the semiconductor wafer. The number of semiconductor die mounted to the carrier is greater than a number of semiconductor die singulated from the semiconductor wafer. The reconstituted wafer is mounted within a chase mold. The chase mold is closed with the semiconductor die disposed within a cavity of the chase mold. An encapsulant is dispersed around the semiconductor die within the cavity under temperature and pressure. The encapsulant can be injected into the cavity of the chase mold. The reconstituted wafer is removed from the chase mold. An interconnect structure is formed over the reconstituted wafer.
    Type: Application
    Filed: July 9, 2013
    Publication date: November 7, 2013
    Inventors: Yoke Hor Phua, Yung Kuan Hsiao
  • Publication number: 20130256923
    Abstract: A semiconductor wafer has a plurality of semiconductor die distributed over a surface area. The semiconductor die are singulated from the semiconductor wafer. The semiconductor die are mounted to a carrier to form a reconstituted semiconductor wafer. The carrier has a surface area 10-50% larger than the surface area of the semiconductor wafer. The number of semiconductor die mounted to the carrier is greater than a number of semiconductor die singulated from the semiconductor wafer. The reconstituted wafer is mounted within a chase mold. The chase mold is closed with the semiconductor die disposed within a cavity of the chase mold. An encapsulant is dispersed around the semiconductor die within the cavity under temperature and pressure. The encapsulant can be injected into the cavity of the chase mold. The reconstituted wafer is removed from the chase mold. An interconnect structure is formed over the reconstituted wafer.
    Type: Application
    Filed: May 30, 2013
    Publication date: October 3, 2013
    Inventors: Yoke Hor Phua, Yung Kuan Hsiao
  • Patent number: 8524577
    Abstract: A semiconductor wafer has a plurality of semiconductor die distributed over a surface area. The semiconductor die are singulated from the semiconductor wafer. The semiconductor die are mounted to a carrier to form a reconstituted semiconductor wafer. The carrier has a surface area 10-50% larger than the surface area of the semiconductor wafer. The number of semiconductor die mounted to the carrier is greater than a number of semiconductor die singulated from the semiconductor wafer. The reconstituted wafer is mounted within a chase mold. The chase mold is closed with the semiconductor die disposed within a cavity of the chase mold. An encapsulant is dispersed around the semiconductor die within the cavity under temperature and pressure. The encapsulant can be injected into the cavity of the chase mold. The reconstituted wafer is removed from the chase mold. An interconnect structure is formed over the reconstituted wafer.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: September 3, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Yoke Hor Phua, Yung Kuan Hsiao
  • Patent number: 8513098
    Abstract: A semiconductor wafer has a plurality of semiconductor die distributed over a surface area. The semiconductor die are singulated from the semiconductor wafer. The semiconductor die are mounted to a carrier to form a reconstituted semiconductor wafer. The carrier has a surface area 10-50% larger than the surface area of the semiconductor wafer. The number of semiconductor die mounted to the carrier is greater than a number of semiconductor die singulated from the semiconductor wafer. The reconstituted wafer is mounted within a chase mold. The chase mold is closed with the semiconductor die disposed within a cavity of the chase mold. An encapsulant is dispersed around the semiconductor die within the cavity under temperature and pressure. The encapsulant can be injected into the cavity of the chase mold. The reconstituted wafer is removed from the chase mold. An interconnect structure is formed over the reconstituted wafer.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: August 20, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Yoke Hor Phua, Yung Kuan Hsiao
  • Publication number: 20130127018
    Abstract: A semiconductor wafer has a plurality of semiconductor die distributed over a surface area. The semiconductor die are singulated from the semiconductor wafer. The semiconductor die are mounted to a carrier to form a reconstituted semiconductor wafer. The carrier has a surface area 10-50% larger than the surface area of the semiconductor wafer. The number of semiconductor die mounted to the carrier is greater than a number of semiconductor die singulated from the semiconductor wafer. The reconstituted wafer is mounted within a chase mold. The chase mold is closed with the semiconductor die disposed within a cavity of the chase mold. An encapsulant is dispersed around the semiconductor die within the cavity under temperature and pressure. The encapsulant can be injected into the cavity of the chase mold. The reconstituted wafer is removed from the chase mold. An interconnect structure is formed over the reconstituted wafer.
    Type: Application
    Filed: February 3, 2012
    Publication date: May 23, 2013
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Yoke Hor Phua, Yung Kuan Hsiao
  • Publication number: 20130087931
    Abstract: A semiconductor wafer has a plurality of semiconductor die distributed over a surface area. The semiconductor die are singulated from the semiconductor wafer. The semiconductor die are mounted to a carrier to form a reconstituted semiconductor wafer. The carrier has a surface area 10-50% larger than the surface area of the semiconductor wafer. The number of semiconductor die mounted to the carrier is greater than a number of semiconductor die singulated from the semiconductor wafer. The reconstituted wafer is mounted within a chase mold. The chase mold is closed with the semiconductor die disposed within a cavity of the chase mold. An encapsulant is dispersed around the semiconductor die within the cavity under temperature and pressure. The encapsulant can be injected into the cavity of the chase mold. The reconstituted wafer is removed from the chase mold. An interconnect structure is formed over the reconstituted wafer.
    Type: Application
    Filed: November 14, 2011
    Publication date: April 11, 2013
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Yoke Hor Phua, Yung Kuan Hsiao