Patents by Inventor Yoneyoshi Kitagawa

Yoneyoshi Kitagawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10134492
    Abstract: The device has a target supply unit 4a for supplying a target 2a to a chamber 3a, a target monitor 5a for monitoring the target 2a present inside the chamber 3a, a laser light irradiator 6a for irradiating the target 2a present inside the chamber 3a, with laser light 8a, and a controller 7a. The target supply unit 4a emits the target 2a at a timing for emitting, that is controlled by the controller 7a, into a preset emission direction 3d inside the chamber 3a, and the controller 7a calculates an irradiation point 4d with the laser light 8a, calculates a timing for arriving of the target 2a at the irradiation point 4d, and makes the laser light irradiator 6a irradiate the target with the laser light, based on the irradiation point 4d and the timing for arriving.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: November 20, 2018
    Assignees: HAMAMATSU PHOTONICS K.K., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takashi Sekine, Toshiyuki Kawashima, Nakahiro Satoh, Yoneyoshi Kitagawa, Yoshitaka Mori, Katsuhiro Ishii, Ryohei Hanayama, Osamu Komeda, Yasuhiko Nishimura, Mitsutaka Kakeno
  • Publication number: 20170341990
    Abstract: A problem to be solved is to provide a method for processing zirconia without producing a monoclinic crystal. The solution is a method for processing zirconia, including the step of irradiating the zirconia with a laser with a pulse duration of 10?12 seconds to 10?15 seconds at an intensity of 1013 to 1015 W/cm2.
    Type: Application
    Filed: August 10, 2015
    Publication date: November 30, 2017
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Osamu KOMEDA, Takuya KONDO, Toshiyuki KAWASHIMA, Hirofumi KAN, Nakahiro SATOH, Takashi SEKINE, Takashi KURITA, Atsushi SUNAHARA, Tomoyoshi MOTOHIRO, Tatsumi HIOKI, Hirozumi AZUMA, Shigeki OHSHIMA, Tsutomu KAJINO, Yoneyoshi KITAGAWA, Yoshitaka MORI, Katsuhiro ISHII, Ryohei HANAYAMA, Yasuhiko NISHIMURA, Eisuke MIURA
  • Patent number: 9805829
    Abstract: A target shell monitoring device 4 that monitors an attitude and a position of the target shell Tg1, a compression laser output device 5a that irradiates the target shell Tg1 with a compression laser light LS1, and a heating laser output device 6 that irradiates the target shell Tg1 with a heating laser light LS3 following the compression laser light LS1 are provided. The target shell Tg1 has a hollow spherical shell shape, includes an approximately spherical space Sp on an inner side thereof, includes at least one through hole H1 connecting an outer side thereof and the space Sp, and includes, on an outer surface Sf1 thereof, irradiation areas Ar1 and Ar2 to be irradiated with compression laser lights.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: October 31, 2017
    Assignees: HAMAMATSU PHOTONICS K.K., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takashi Sekine, Takashi Kurita, Toshiyuki Kawashima, Nakahiro Satoh, Hirofumi Kan, Yoneyoshi Kitagawa, Yoshitaka Mori, Katsuhiro Ishii, Kazuhisa Fujita, Ryohei Hanayama, Shinichiro Okihara, Atsushi Sunahara, Osamu Komeda, Naoki Nakamura, Yasuhiko Nishimura, Hirozumi Azuma
  • Patent number: 9363882
    Abstract: An object is to be capable of inducing a nuclear fusion reaction at a relatively high efficiency and downsize a device. A nuclear fusion device 1 of the present invention includes a nuclear fusion target 7 including a target substrate 7a containing deuterium or tritium and a thin-film layer 7b containing deuterium or tritium stacked on the target substrate 7a, a vacuum container 5 for storing the nuclear fusion target 7, and a laser unit 3 for irradiating two successive first and second pulsed laser lights P1, P2 toward the thin-film layer 7b of the nuclear fusion target 7, and the intensity of the first pulsed laser light P1 is set to a value that is smaller than that of the second pulsed laser light P2 and allows peeling of the thin-film layer 7b from the target substrate 7a.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: June 7, 2016
    Assignees: HAMAMATSU PHOTONICS K.K., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takashi Sekine, Toshiyuki Kawashima, Hirofumi Kan, Yoneyoshi Kitagawa, Yoshitaka Mori, Hirozumi Azuma, Tatsumi Hioki, Tomoyoshi Motohiro, Yasushi Miyamoto, Naoki Nakamura
  • Publication number: 20150294744
    Abstract: The device has a target supply unit 4a for supplying a target 2a to a chamber 3a, a target monitor 5a for monitoring the target 2a present inside the chamber 3a, a laser light irradiator 6a for irradiating the target 2a present inside the chamber 3a, with laser light 8a, and a controller 7a. The target supply unit 4a emits the target 2a at a timing for emitting, that is controlled by the controller 7a, into a preset emission direction 3d inside the chamber 3a, and the controller 7a calculates an irradiation point 4d with the laser light 8a, calculates a timing for arriving of the target 2a at the irradiation point 4d, and makes the laser light irradiator 6a irradiate the target with the laser light, based on the irradiation point 4d and the timing for arriving.
    Type: Application
    Filed: October 4, 2013
    Publication date: October 15, 2015
    Applicants: HAMAMATSU PHOTONICS K.K., TOYOTA JIDOSHA KABUSHIKI KAISHA, The Graduate School for the Creation of New Photonics Industries
    Inventors: Takashi Sekine, Toshiyuki Kawashima, Nakahiro Satoh, Yoneyoshi Kitagawa, Yoshitaka Mori, Katsuhiro Ishii, Ryohei Hanayama, Osamu Komeda, Yasuhiko Nishimura, Mitsutaka Kakeno
  • Publication number: 20150270019
    Abstract: A target shell monitoring device 4 that monitors an attitude and a position of the target shell Tg1, a compression laser output device 5a that irradiates the target shell Tg1 with a compression laser light LS1, and a heating laser output device 6 that irradiates the target shell Tg1 with a heating laser light LS3 following the compression laser light LS1 are provided. The target shell Tg1 has a hollow spherical shell shape, includes an approximately spherical space Sp on an inner side thereof, includes at least one through hole H1 connecting an outer side thereof and the space Sp, and includes, on an outer surface Sf1 thereof, irradiation areas Ar1 and Ar2 to be irradiated with compression laser lights.
    Type: Application
    Filed: October 10, 2013
    Publication date: September 24, 2015
    Inventors: Takashi Sekine, Takashi Kurita, Toshiyuki Kawashima, Nakahiro Satoh, Hirofumi Kan, Yoneyoshi Kitagawa, Yoshitaka Mori, Katsuhiro Ishii, Kazuhisa Fujita, Ryohei Hanayama, Shinichiro Okihara, Atsushi Sunahara, Osamu Komeda, Naoki Nakamura, Yasuhiko Nishimura, Hirozumi Azuma
  • Publication number: 20120307950
    Abstract: An object is to be capable of inducing a nuclear fusion reaction at a relatively high efficiency and downsize a device. A nuclear fusion device 1 of the present invention includes a nuclear fusion target 7 including a target substrate 7a containing deuterium or tritium and a thin-film layer 7b containing deuterium or tritium stacked on the target substrate 7a, a vacuum container 5 for storing the nuclear fusion target 7, and a laser unit 3 for irradiating two successive first and second pulsed laser lights P1, P2 toward the thin-film layer 7b of the nuclear fusion target 7, and the intensity of the first pulsed laser light P1 is set to a value that is smaller than that of the second pulsed laser light P2 and allows peeling of the thin-film layer 7b from the target substrate 7a.
    Type: Application
    Filed: December 15, 2010
    Publication date: December 6, 2012
    Applicants: Toyota Jidosha Kabushiki Kaisha, Hamamatsu Photonics K.K.
    Inventors: Takashi Sekine, Toshiyuki Kawashima, Hirofumi Kan, Yoneyoshi Kitagawa, Yoshitaka Mori, Hirozumi Azuma, Tatsumi Hioki, Tomoyoshi Motohiro, Yasushi Miyamoto, Naoki Nakamura
  • Publication number: 20040012864
    Abstract: A hollow tube having a pair of openings which have their respective different diameters and arm opposed each other is prepared. Then, a pulsed laser beam is introduced into the hollow tube from the larger opening thereof and then, reflected multiply on the inner wall surface of the hollow tube. The introduced pulsed laser beam is focused during the traveling for the smaller opening of the hollow tube to generate a focused laser beam. The thus obtained focused laser beam is output from the smaller opening of the hollow tube.
    Type: Application
    Filed: August 21, 2002
    Publication date: January 22, 2004
    Applicant: OSAKA UNIVERSITY
    Inventors: Kunioki Mima, Ryosuke Kodama, Tatsuhiko Yamanaka, Yoneyoshi Kitagawa, Kazuo Tanaka, Yasuhiko Sentoku
  • Patent number: 6676264
    Abstract: A hollow tube having a pair of openings which have their respective different diameters and are opposed each other is prepared. Then, a pulsed laser beam is introduced into the hollow tube from the larger opening thereof and then, reflected multiply on the inner wall surface of the hollow tube. The introduced pulsed laser beam is focused during the traveling for the smaller opening of the hollow tube to generate a focused laser beam. The thus obtained focused laser beam is output from the smaller opening of the hollow tube.
    Type: Grant
    Filed: August 21, 2002
    Date of Patent: January 13, 2004
    Assignee: Osaka University
    Inventors: Kunioki Mima, Ryosuke Kodama, Tatsuhiko Yamanaka, Yoneyoshi Kitagawa, Kazuo Tanaka, Yasuhiko Sentoku