Patents by Inventor Yong Gyun BAE

Yong Gyun BAE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11050066
    Abstract: Disclosed is a fuel cell with improved thermal distribution in a stack including two more unit cells stacked therein. The fuel cell includes a stack including the two more unit cells and separators each having manifolds formed through four sides thereof, a first chamber having an internal space so as to receive air and fuel from the outside and to transfer the air and fuel to a second chamber and so as to receive the air and fuel discharged from the stack and to discharge the air and fuel to the outside, a second chamber having an internal space so as to receive the air and fuel from the first chamber and to transfer the air and fuel to the stack, and a connecting part connecting the first chamber to the second chamber so as to allow the air and fuel to flow to the second chamber from the first chamber.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: June 29, 2021
    Assignees: Korea Institute of Science and Technology, Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Jong Ho Lee, Kyung Joong Yoon, Sang Hyeok Lee, Dong Hwan Kim, Jong Sup Hong, Yong Gyun Bae
  • Patent number: 11050065
    Abstract: The present disclosure provides a separator for a fuel cell, including a central part with a rectangular shape, and a surrounding part disposed to surround the central part, wherein the surrounding part includes an outlet manifold positioned at a pair of edges of the central part, which are opposed each other, and an inlet manifold positioned along a side of the central part to be adjacent to another edge except for the pair of edges at which the outlet manifold is positioned, and the central part includes a plurality of guide patterns that are spaced apart from each other to guide fluids introduced through the inlet manifold toward the outlet manifold.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: June 29, 2021
    Assignees: Korea Institute of Science and Technology, Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Jong Ho Lee, Kyung Joong Yoon, Sang Hyeok Lee, Dong Hwan Kim, Jong Sup Hong, Yong Gyun Bae
  • Patent number: 10840533
    Abstract: This application relates to a separator for a fuel cell and a fuel cell stack with improved durability, which contains the same, particularly to a solid oxide fuel cell stack. Specifically, this application allows an oxidizer and a fuel to flow in a counter-flow manner and a cross-flow manner in the fuel cell stack by forming an outlet manifold and an inlet manifold to have a specific shape, location and size in the separator. As a result, interlayer peeling, microcracking, etc. are prevented because no variation in temperature, reactant concentration, power, etc. occurs between each unit cell and the power density per unit volume is significantly improved because the volume is minimized.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: November 17, 2020
    Assignees: Korea Institute of Science and Technology, Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Jong Ho Lee, Kyung Joong Yoon, Sang Hyeok Lee, Yong Gyun Bae, Dong Hwan Kim, Jong Sup Hong
  • Publication number: 20200212456
    Abstract: Disclosed is a fuel cell with improved thermal distribution in a stack including two more unit cells stacked therein. The fuel cell includes a stack including the two more unit cells and separators each having manifolds formed through four sides thereof, a first chamber having an internal space so as to receive air and fuel from the outside and to transfer the air and fuel to a second chamber and so as to receive the air and fuel discharged from the stack and to discharge the air and fuel to the outside, a second chamber having an internal space so as to receive the air and fuel from the first chamber and to transfer the air and fuel to the stack, and a connecting part connecting the first chamber to the second chamber so as to allow the air and fuel to flow to the second chamber from the first chamber.
    Type: Application
    Filed: August 29, 2019
    Publication date: July 2, 2020
    Applicants: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY, INDUSTRY-ACADEMIC COOPERATION FOUNDATION, YONSEI UNIVERSITY
    Inventors: Jong Ho LEE, Kyung Joong YOON, Sang Hyeok LEE, Dong Hwan KIM, Jong Sup HONG, Yong Gyun BAE
  • Publication number: 20200075966
    Abstract: The present disclosure provides a separator for a fuel cell, including a central part with a rectangular shape, and a surrounding part disposed to surround the central part, wherein the surrounding part includes an outlet manifold positioned at a pair of edges of the central part, which are opposed each other, and an inlet manifold positioned along a side of the central part to be adjacent to another edge except for the pair of edges at which the outlet manifold is positioned, and the central part includes a plurality of guide patterns that are spaced apart from each other to guide fluids introduced through the inlet manifold toward the outlet manifold.
    Type: Application
    Filed: February 27, 2019
    Publication date: March 5, 2020
    Applicants: Korea Institue Of Science And Technology, Industry-Academic Cooperation Foundation , Yonsei University
    Inventors: Jong Ho LEE, Kyung Joong Yoon, Sang Hyeok Lee, Dong Hwan Kim, Jong Sup Hong, Yong Gyun Bae
  • Publication number: 20190305351
    Abstract: This application relates to a separator for a fuel cell and a fuel cell stack with improved durability, which contains the same, particularly to a solid oxide fuel cell stack. Specifically, this application allows an oxidizer and a fuel to flow in a counter-flow manner and a cross-flow manner in the fuel cell stack by forming an outlet manifold and an inlet manifold to have a specific shape, location and size in the separator. As a result, interlayer peeling, microcracking, etc. are prevented because no variation in temperature, reactant concentration, power, etc. occurs between each unit cell and the power density per unit volume is significantly improved because the volume is minimized.
    Type: Application
    Filed: October 25, 2018
    Publication date: October 3, 2019
    Applicants: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY, INDUSTRY-ACADEMIC COOPERATION FOUNDATION, YONSEI UNIVERSITY
    Inventors: Jong Ho LEE, Kyung Joong YOON, Sang Hyeok LEE, Yong Gyun BAE, Dong Hwan KIM, Jong Sup HONG