Patents by Inventor Yong Hwan Jeong

Yong Hwan Jeong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6902634
    Abstract: The present invention relates to a method for manufacturing zirconium-based alloys containing niobium with superior corrosion resistance for use in nuclear fuel rod claddings. The method of this invention comprises melting of the alloy, ?-forging, ?-quenching, hot-working, vacuum annealing, cold-working, intermediate annealing and final annealing, whereby the niobium concentration in the ?-Zr matrix decreases from the supersaturation state to the equilibrium state to improve the corrosion resistance of the alloy. Such zirconium-based alloys containing niobium are usefully applied to nuclear fuel rod cladding of the cores in light water reactors and heavy water reactors.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: June 7, 2005
    Assignees: Korea Atomic Energy Research Institute, Korea Hydro & Nuclear Power Co., Ltd.
    Inventors: Yong Hwan Jeong, Jong Hyuk Baek, Byoung Kwon Choi, Sang Yoon Park, Myung Ho Lee, Cheol Nam, Jeong Yong Park, Youn Ho Jung
  • Patent number: 6811746
    Abstract: The present invention relates to a zirconium alloy having excellent corrosion resistance and mechanical properties and a method for preparing a nuclear fuel cladding tube by zirconium alloy. More particulary, the present invention is directed to a zirconium alloy comprising Zr-aNb-bSn-cFe-dCr-eCu (a=0.05-0.4 wt %, b=0.3-0.7 wt %, c=0.1-0.4 wt %, d=0-0.2 wt % and e=0.01-0.2 wt %, provided that Nb+Sn=0.35-1.0 wt %), and to a method for preparing a zirconium alloy nuclear fuel cladding tube, comprising melting a metal mixture comprising of the zirconium and alloying elements to obtain ingot, forging the ingot at &bgr; phase range, &bgr;-quenching the forged ingot at 1015-1075° C., hot-working the quenched ingot at 600-650° C., cold-working the hot-worked ingot in three to five passes, with intermediate vacuum annealing and final vacuum annealing the worked ingot at 460-540° C.
    Type: Grant
    Filed: November 1, 2001
    Date of Patent: November 2, 2004
    Assignees: Korea Atomic Energy Research Institute, Korea Hydro & Nuclear Power Co., Ltd.
    Inventors: Yong Hwan Jeong, Jong Hyuk Baek, Byoung Kwon Choi, Myung Ho Lee, Sang Yoon Park, Cheol Nam, Youn Ho Jung
  • Publication number: 20030098105
    Abstract: The present invention relates to a method for manufacturing zirconium-based alloys containing niobium with superior corrosion resistance for use in nuclear fuel rod claddings. The method of this invention comprises melting of the alloy, &bgr;-forging, &bgr;-quenching, hot-working, vacuum annealing, cold-working, intermediate annealing and final annealing, whereby the niobium concentration in the &agr;-Zr matrix decreases from the supersaturation state to the equilibrium state to improve the corrosion resistance of the alloy. Such zirconium-based alloys containing niobium are usefully applied to nuclear fuel rod cladding of the cores in light water reactors and heavy water reactors.
    Type: Application
    Filed: July 9, 2002
    Publication date: May 29, 2003
    Inventors: Yong Hwan Jeong, Jong Hyuk Baek, Byoung Kwon Choi, Sang Yoon Park, Myung Ho Lee, Cheol Nam, Jeong Yong Park, Youn Ho Jung
  • Publication number: 20030044306
    Abstract: The present invention relates to a zirconium alloy having excellent corrosion resistance and mechanical properties and a method for preparing a nuclear fuel cladding tube by zirconium alloy. More particulary, the present invention is directed to a zirconium alloy comprising Zr-aNb-bSn-cFe-dCr-eCu (a=0.05-0.4 wt %, b=0.3-0.7 wt %, c=0.1-0.4 wt %, d=0-0.2 wt % and e=0.01-0.2 wt %, provided that Nb+Sn=0.35-1.0 wt %), and to a method for preparing a zirconium alloy nuclear fuel cladding tube, comprising melting a metal mixture comprising of the zirconium and alloying elements to obtain ingot, forging the ingot at &bgr; phase range, &bgr;-quenching the forged ingot at 1015-1075° C., hot-working the quenched ingot at 600-650° C., cold-working the hot-worked ingot in three to five passes, with intermediate vacuum annealing and final vacuum annealing the worked ingot at 460-540° C.
    Type: Application
    Filed: November 1, 2001
    Publication date: March 6, 2003
    Inventors: Yong Hwan Jeong, Jong Hyuk Baek, Byoung Kwon Choi, Myung Ho Lee, Sang Yoon Park, Cheol Nam, Youn Ho Jung
  • Patent number: 6514360
    Abstract: Disclosed is a method for manufacturing a tube and a sheet of niobium-containing zirconium alloys for the high burn-up nuclear fuel. The method comprises melting Nb-added zirconium alloy to ingot; forging the ingot at &bgr; phase range; &bgr;-quenching the forged ingot after solution heat-treatment at 1015-1075° C.; hot-working the quenched ingot at 600-650° C.; cold-working the hot-worked ingot in three to five passes, with intermediate vacuum annealing; and final vacuum annealing the cold-worked ingot at 440-600° C., wherein temperatures of intermediate vacuum annealing and final vacuum annealing after &bgr;-quenching are changed so as to attain the condition under which precipitates in the alloy matrix are limited to an average diameter of 80 nm or smaller and the accumulated annealing parameter (&Sgr; A) is limited to 1.0×10−18 hr or lower.
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: February 4, 2003
    Assignees: Korea Atomic Energy Reserach Institute, Korea Electric Power Corporation
    Inventors: Yong Hwan Jeong, Jong Hyuk Baek, Byoung Kwon Choi, Kyeong Ho Kim, Myung Ho Lee, Sang Yoon Park, Cheol Nam, Younho Jung
  • Publication number: 20020136347
    Abstract: Disclosed is a method for manufacturing a tube and a sheet of niobium-containing zirconium alloys for the high burn-up nuclear fuel. The method comprises melting Nb-added zirconium alloy to ingot; forging the ingot at &bgr; phase range; &bgr;-quenching the forged ingot after solution heat-treatment at 1015-1075° C.; hot-working the quenched ingot at 600-650° C.; cold-working the hot-worked ingot in three to five passes, with intermediate vacuum annealing; and final vacuum annealing the cold-worked ingot at 440-600° C., wherein temperatures of intermediate vacuum annealing and final vacuum annealing after &bgr;-quenching are changed so as to attain the condition under which precipitates in the alloy matrix are limited to an average diameter of 80 nm or smaller and the accumulated annealing parameter (&Sgr;A) is limited to 1.
    Type: Application
    Filed: May 10, 2001
    Publication date: September 26, 2002
    Inventors: Yong Hwan Jeong, Jong Hyuk Baek, Byoung Kwon Choi, Kyeong Ho Kim, Myung Ho Lee, Sang Yoon Park, Cheol Nam, Younho Jung
  • Patent number: 6325966
    Abstract: The invention presented herein relates to a zirconium alloy with superior corrosion resistance and high strength for use in fuel rod claddings, spacer grids and structural components in reactor core of light water and heavy water nuclear power plant. The zirconium alloy of this invention with superior corrosion resistance and high strength comprises an alloy composition as follows: niobium in a range of 0.15 to 0.25 wt. %; tin in a range of 1.10 to 1.40 wt. %; iron in a range of 0.35 to 0.45; chromium in a range of 0.15 to 0.25; one element selected from the group consisting of molybdenum, copper and manganese in a range of 0.08 to 0.12 wt. %; oxygen in a range of 0.10 to 0.14 wt. %; and the balance being zirconium.
    Type: Grant
    Filed: April 16, 1999
    Date of Patent: December 4, 2001
    Assignees: Korea Atomic Energy Research Institute, Korea Electric Power Corporation
    Inventors: Yong Hwan Jeong, Jong Hyuk Baek, Kyeong Ho Kim, Sun-Jae Kim, Byong Kwon Choi, Youn Ho Jung
  • Patent number: 6261516
    Abstract: The invention presented herein relates to a niobium-containing zirconium alloy for use in nuclear fuel cladding. The Zr alloy of this invention with superior corrosion resistance is characterized as comprising an alloy composition as follows: 1) niobium (Nb), in a range of 0.8 to 1.2 wt. %; one or more elements selected from the group consisting of iron (Fe), molybdenum (Mo), copper (Cu) and manganese (Mn), in a range of 0.1 to 0.3 wt. %, respectively; oxygen (O), in a range of 600 to 1400 ppm; silicon (Si), in a range of 80 to 120 ppm; and the balance being of Zr, 2) Nb, in a range of 1.3 to 1.8 wt. %; tin (Sn), in a range of 0.2 to 0.5 wt. %; one element selected from the group consisting of Fe, Mo, Cu and Mn, in a range of 0.1 to 0.3 wt. %; O, in a range of 600 to 1400 ppm; Si, in a range of 80 to 120 ppm; and the balance being of Zr, 3) Nb, in a range of 1.3 to 1.8 wt. %; Sn, in a range of 0.2 to 0.5 wt. %; Fe, in a range of 0.1 to 0.3 wt.
    Type: Grant
    Filed: March 8, 2000
    Date of Patent: July 17, 2001
    Assignees: Korea Atomic Energy Research Institute, Korea Electric Power Corporation
    Inventors: Yong Hwan Jeong, Jong Hyuk Baek, Byoung Kwon Choi, Kyeong Ho Kim, Myung Ho Lee, Sang Yoon Park, Cheol Nam, Youn Ho Jung
  • Patent number: 6001326
    Abstract: A method for production of mono-dispersed and crystalline titanium dioxide ultra fine powders comprises preparing an aqueous titanyl chloride solution, diluting the aqueous titanyl chloride solution to a concentration of between about 0.2 to 1.2 mole and heating the diluted aqueous titanyl chloride solution and maintaining the solution in a temperature range of between 15 to 155.degree. C. to precipitate titanium dioxide. The aqueous titanyl chloride solution is prepared by adding ice pieces of distilled water or icing distilled water to undiluted titanium tetrachloride.
    Type: Grant
    Filed: September 28, 1998
    Date of Patent: December 14, 1999
    Assignee: Korea Atomic Energy Research Institute
    Inventors: Sun-Jae Kim, Soon Dong Park, Kyeong Ho Kim, Yong Hwan Jeong, Il Hiun Kuk
  • Patent number: 5985211
    Abstract: The present invention is directed to an advanced zirconium alloy having superior corrosion resistance and high strength suitable for fuel rod cladding, spacer grids and other structural components in a reactor core of nuclear power plants.
    Type: Grant
    Filed: June 12, 1998
    Date of Patent: November 16, 1999
    Assignees: Korea Atomic Energy Research Institute, Korea Electric Power Corporation
    Inventors: Yong Hwan Jeong, Jong Hyuk Baek, Byong Kwon Choi, Kyeong Ho Kim, Sun Jae Kim, Youn Ho Jung, Il Hiun Kuk
  • Patent number: 5972288
    Abstract: The invention presented herein relates to a zirconium alloy with superior corrosion resistance and high strength for use in fuel rod claddings, spacer grids and structural components as used in reactor core of light water and heavy water nuclear power plant. The zirconium alloy of this invention with superior corrosion resistance and high strength comprises an alloy composition as follows:niobium(Nb), in a range of 0.05 to 0.3 wt. %;tin(Sn), in a range of 0.8 to 1.6 wt. %;iron(Fe), in a range of 0.2 to 0.4 wt. %;a selected one from the group consisted of vanadium(V), tellurium(Te), antimony(Sb), molybdenum(Mo), tantalum(Ta), and copper(Cu), in a range of 0.05 to 0.20 wt. %;oxygen(O), in a range of 600 to 1400 ppm; andthe balance being zirconium(Zr).
    Type: Grant
    Filed: June 12, 1998
    Date of Patent: October 26, 1999
    Assignees: Korea Atomic Energy Research Institute, Korea Electric Power Corporation
    Inventors: Yong Hwan Jeong, Jong Hyuk Baek, Byong Kwon Choi, Kyeong Ho Kim, Sun Jae Kim, Youn Ho Jung, Il Hiun Kuk