Patents by Inventor Yong-Lae Park

Yong-Lae Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230310249
    Abstract: Disclosed is a robotic orthosis for a lower extremity for gait rehabilitation training, comprising a knee stretching member which is provided to be installable on the knee so as to enable the knee joint to be stretched in a swing phase and enable a state in which the knee is stretched to be maintained in a stance phase. The knee stretching member comprises: a knee sleeve surrounding the knee joint; and a knee supporting chamber which is mounted so as to be connected to the knee sleeve, and which, when air is introduced therein and is inflated in the swing phase, enables the knee to be stretched by supporting the knee joint, and enables the state in which the knee is stretched to be maintained in the stance phase.
    Type: Application
    Filed: March 31, 2021
    Publication date: October 5, 2023
    Inventors: Nam-Jong Paik, Jihong Park, Yong-Lae Park, Junghan Kwon
  • Publication number: 20230069562
    Abstract: A bi-stable soft electromagnetic actuator includes a housing including a frame portion formed of a stretchable elastic body, a stretchable coil portion generating an electromagnetic field by applied power, located in the housing, and having a first surface and a second surface facing in mutually opposite directions, and at least a pair of permanent magnet portions respectively facing the first surface and the second surface of the stretchable coil portion and arranged to maintain a distance by the frame portion.
    Type: Application
    Filed: August 26, 2022
    Publication date: March 2, 2023
    Inventors: Yong Lae PARK, Gyo Wook SHIN, Yeongjin CHOI, Byung Jun JEON, Inrak CHOI
  • Publication number: 20220387208
    Abstract: A non-fixed shoulder brace is provided comprising: an affected shoulder support which is supported on an affected shoulder of a wearer; a waist support coupled to the wearer's waist; an affected arm mounting part in which the wearer's affected arm is inserted and which is supported by means of an affected shoulder strap member from the affected shoulder support; and an affected upper limb exercise assistance apparatus coupled to both ends of the waist support and disposed between the wearer's waist and the affected arm mounting part.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 8, 2022
    Inventors: Nam-Jong PAIK, Jihong PARK, Jae-Young LIM, Won-Seok KIM, Yong-Lae PARK, Junghan KWON
  • Patent number: 11471135
    Abstract: A biopsy needle has a central axis and includes one or more sensing regions, each sensing region formed by a plurality of sensing optical fibers located over a particular extent of said central axis and inside the outer shell of the needle. The sensing optical fibers are coupled to a wavelength interrogator. A steerable catheter has a central axis and outer shell, the outer shell coupled to a plurality of optical fibers in sensing regions and actuation regions, the sensing regions formed over particular extents of the central axis by bonding gratings to the inner surface of the outer shell, and the actuation regions formed by coupling optical energy into shape memory alloys bonded to the outer shell.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: October 18, 2022
    Assignee: Intelligent Fiber Optic Systems, Inc.
    Inventors: Yong-Lae Park, Richard James Black, Behzad Moslehi, Mark R. Cutkosky, Santhi Elayaperumal, Bruce Daniel, Alan Yeung, Vahid Sotoudeh
  • Publication number: 20200360223
    Abstract: Disclosed is a pneumatic inflatable rehabilitation device including a first fixing band mounted on an upper part of a forearm, a second fixing band mounted on a lower part of the forearm, and at least one rehabilitation band having one side and the other side mounted between the first fixing band and the second fixing band and wound around the forearm at least once.
    Type: Application
    Filed: April 13, 2020
    Publication date: November 19, 2020
    Inventors: Yong-lae PARK, Se-hun PARK, Dong-wook KIM, Jae-hyun YI
  • Patent number: 10562260
    Abstract: A pneumatic artificial muscle (PAM) actuator body can be formed from an elastic material that includes an inflatable chamber and a restraining component, such as flexible, but inextensible fibers, that causes the actuator to contract when the chamber is inflated with fluid (e.g., air or water). The actuator body can be cylindrical or flat. The actuator body can include a sensor layer formed of an elastic material including a microchannel filled with a conductive fluid to sense the expansion of the actuator body. The sensor layer can be configured to expand when the actuator body is inflated causing the electrical resistance of the conductive fluid to change. A sensor layer between the actuator body and restraining component can be used to measure changes in the contraction force of the actuator and a sensor layer outside of the restraining component can be used to measure changes in the length of the actuator.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: February 18, 2020
    Assignee: President and Fellows of Harvard College
    Inventors: Yong-Lae Park, Robert J. Wood, Jobim Jose Robinsantos, Eugene C. Goldfield
  • Patent number: 10527507
    Abstract: An elastic strain sensor can be incorporated into an artificial skin that can sense flexing by the underlying support structure of the skin to detect and track motion of the support structure. The unidirectional elastic strain sensor can be formed by filling two or more channels in an elastic substrate material with a conductive liquid. At the ends of the channels, a loop port connects the channels to form a serpentine channel. The channels extend along the direction of strain and the loop portions have sufficiently large cross-sectional area in the direction transverse to the direction of strain that the sensor is unidirectional. The resistance is measured at the ends of the serpentine channel and can be used to determine the strain on the sensor. Additional channels can be added to increase the sensitivity of the sensor. The sensors can be stacked on top of each other to increase the sensitivity of the sensor.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: January 7, 2020
    Assignee: President and Fellows of Harvard College
    Inventors: Robert J. Wood, Yong-Lae Park, Carmel S. Majidi, Bor-rong Chen, Leia Stirling, Conor James Walsh, Radhika Nagpal, Diana Young, Yigit Menguc
  • Publication number: 20190192124
    Abstract: A biopsy needle has a central axis and includes one or more sensing regions, each sensing region formed by a plurality of sensing optical fibers located over a particular extent of said central axis and inside the outer shell of the needle. The sensing optical fibers are coupled to a wavelength interrogator. A steerable catheter has a central axis and outer shell, the outer shell coupled to a plurality of optical fibers in sensing regions and actuation regions, the sensing regions formed over particular extents of the central axis by bonding gratings to the inner surface of the outer shell, and the actuation regions formed by coupling optical energy into shape memory alloys bonded to the outer shell.
    Type: Application
    Filed: February 11, 2019
    Publication date: June 27, 2019
    Applicant: Intelligent Fiber Optic Systems, Inc.
    Inventors: Yong-Lae PARK, Richard James BLACK, Behzad MOSLEHI, Mark R. CUTKOSKY, Santhi ELAYAPERUMAL, Bruce DANIEL, Alan YEUNG, Vahid SOTOUDEH
  • Patent number: 10238370
    Abstract: A biopsy needle has a central axis and includes one or more sensing regions, each sensing region formed by a plurality of sensing optical fibers located over a particular extent of said central axis and inside the outer shell of the needle. The sensing optical fibers are coupled to a wavelength interrogator. A steerable catheter has a central axis and outer shell, the outer shell coupled to a plurality of optical fibers in sensing regions and actuation regions, the sensing regions formed over particular extents of the central axis by bonding gratings to the inner surface of the outer shell, and the actuation regions formed by coupling optical energy into shape memory alloys bonded to the outer shell.
    Type: Grant
    Filed: January 3, 2014
    Date of Patent: March 26, 2019
    Assignee: INTELLIGENT FIBER OPTIC SYSTEMS, INC.
    Inventors: Yong-Lae Park, Richard James Black, Behzad Moslehi, Mark R. Cutkosky, Santhi Elayaperumal, Bruce Daniel, Alan Yeung, Vahid Sotoudeh
  • Publication number: 20180188125
    Abstract: A stretchable optical sensor that can detect multiple modes of deformation and contact, including pressure, strain, and bending. The method of operation involves a waveguide and a flexible housing, in one embodiment made of silicone rubber. The interface between the two is a reflective layer that encapsulates light propagating through the channel. As the sensor is stretched, compressed, or bent, cracks within the reflective layer form and allow light to escape, resulting in a linear changes to the signal response.
    Type: Application
    Filed: July 22, 2016
    Publication date: July 5, 2018
    Inventors: Yong-Lae Park, Celeste To
  • Publication number: 20180143091
    Abstract: An elastic strain sensor can be incorporated into an artificial skin that can sense flexing by the underlying support structure of the skin to detect and track motion of the support structure. The unidirectional elastic strain sensor can be formed by filling two or more channels in an elastic substrate material with a conductive liquid. At the ends of the channels, a loop port connects the channels to form a serpentine channel. The channels extend along the direction of strain and the loop portions have sufficiently large cross-sectional area in the direction transverse to the direction of strain that the sensor is unidirectional. The resistance is measured at the ends of the serpentine channel and can be used to determine the strain on the sensor. Additional channels can be added to increase the sensitivity of the sensor. The sensors can be stacked on top of each other to increase the sensitivity of the sensor.
    Type: Application
    Filed: November 27, 2017
    Publication date: May 24, 2018
    Applicant: President and Fellows of Harvard College
    Inventors: Robert J. Wood, Yong-Lae Park, Carmel S. Majidi, Bor-rong Chen, Leia Stirling, Conor James Walsh, Radhika Nagpal, Diana Young, Yigit Menguc
  • Patent number: 9841331
    Abstract: An elastic strain sensor can be incorporated into an artificial skin that can sense flexing by the underlying support structure of the skin to detect and track motion of the support structure. The uni-directional elastic strain sensor can be formed by filling two or more channels in an elastic substrate material with a conductive liquid. At the ends of the channels, a loop port connects the channels to form a serpentine channel. The channels extend along the direction of strain and the loop portions have sufficiently large cross-sectional area in the direction transverse to the direction of strain that the sensor is unidirectional. The resistance is measured at the ends of the serpentine channel and can be used to determine the strain on the sensor. Additional channels can be added to increase the sensitivity of the sensor. The sensors can be stacked on top of each other to increase the sensitivity of the sensor.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: December 12, 2017
    Assignee: President and Fellows of Harvard College
    Inventors: Robert J. Wood, Yong-Lae Park, Carmel S. Majidi, Bor-rong Chen, Leia Stirling, Conor James Walsh, Radhika Nagpal, Diana Young, Yigit Menguc
  • Patent number: 9797791
    Abstract: A sensor including a layer having viscoelastic properties, the layer comprising a void, the void filled with a fluid; and optionally, a more rigid sensing element embedded within the layer. When a force is applied to a surface of the sensor, the shape of the void changes, causing the electrical resistance of the fluid in the void to change. When included, the more rigid sensing element can bear upon the void to cause the electrical resistance of the fluid in the void to change. A direction and intensity of the force can be determined by measuring the change of the electrical resistance of different voids positioned about the sensing element. The layer can be an elastomer, preferably silicone rubber. The fluid can be a conductive liquid, preferably Eutectic Gallium Indium. The sensing element can be plastic and can have a “Joystick” shape. The voids can take the form of channels or microchannels having a predefined pattern and/or shape.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: October 24, 2017
    Assignee: President and Fellows of Harvard College
    Inventors: Daniel Vogt, Yong-Lae Park, Robert J. Wood
  • Publication number: 20150337874
    Abstract: A pneumatic artificial muscle (PAM) actuator body can be formed from an elastic material that includes an inflatable chamber and a restraining component, such as flexible, but inextensible fibers, that causes the actuator to contract when the chamber is inflated with fluid (e.g., air or water). The actuator body can be cylindrical or flat. The actuator body can include a sensor layer formed of an elastic material including a microchannel filled with a conductive fluid to sense the expansion of the actuator body. The sensor layer can be configured to expand when the actuator body is inflated causing the electrical resistance of the conductive fluid to change. A sensor layer between the actuator body and restraining component can be used to measure changes in the contraction force of the actuator and a sensor layer outside of the restraining component can be used to measure changes in the length of the actuator.
    Type: Application
    Filed: January 21, 2014
    Publication date: November 26, 2015
    Inventors: Yong-Lae PARK, Robert J. WOOD, Jobim SANTOS, Eugene C. GOLDFIELD
  • Publication number: 20150292968
    Abstract: A sensor including a layer having viscoelastic properties, the layer comprising a void, the void filled with a fluid; and optionally, a more rigid sensing element embedded within the layer. When a force is applied to a surface of the sensor, the shape of the void changes, causing the electrical resistance of the fluid in the void to change. When included, the more rigid sensing element can bear upon the void to cause the electrical resistance of the fluid in the void to change. A direction and intensity of the force can be determined by measuring the change of the electrical resistance of different voids positioned about the sensing element. The layer can be an elastomer, preferably silicone rubber. The fluid can be a conductive liquid, preferably Eutectic Gallium Indium. The sensing element can be plastic and can have a “Joystick” shape. The voids can take the form of channels or microchannels having a predefined pattern and/or shape.
    Type: Application
    Filed: October 22, 2013
    Publication date: October 15, 2015
    Inventors: Daniel Vogt, Yong-Lae Park, Robert J. Wood
  • Publication number: 20150190123
    Abstract: A biopsy needle has a central axis and includes one or more sensing regions, each sensing region formed by a plurality of sensing optical fibers located over a particular extent of said central axis and inside the outer shell of the needle. The sensing optical fibers are coupled to a wavelength interrogator. A steerable catheter has a central axis and outer shell, the outer shell coupled to a plurality of optical fibers in sensing regions and actuation regions, the sensing regions formed over particular extents of the central axis by bonding gratings to the inner surface of the outer shell, and the actuation regions formed by coupling optical energy into shape memory alloys bonded to the outer shell.
    Type: Application
    Filed: January 3, 2014
    Publication date: July 9, 2015
    Applicant: INTELLIGENT FIBER OPTIC SYSTEMS, INC.
    Inventors: Yong-Lae PARK, Richard James BLACK, Behzad MOSLEHI, Mark R. CUTCOSKY, Santhi Elayaperumal, Bruce DANIEL, Alan YEUNG, Vahid SOTOUDEH
  • Publication number: 20150088043
    Abstract: A flexible orthotic device includes two or more active components embedded in a sheet material. Each active component can include a controller and one or more actuation elements controlled by the controller. The two or more active components can communicate with each other and cause the active components to contract and dynamically change the structural characteristics of the orthotic device. By coordinating the motion of two or more active components, the flexible orthotic device can be programmed to assist or resist the motion of a subject wearing the device. The orthotic device can be effectively employed to provide locomotion assistance, gait rehabilitation, and gait training. Similarly, the orthotic device may be applied to the wrist, elbow, torso, or any other body part. The active components may be actuated to effectively transmit force to a body part, such as a limb, to assist with movement when desired.
    Type: Application
    Filed: September 1, 2012
    Publication date: March 26, 2015
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Eugene C. Goldfield, Yong-lae Park, Bor-rong Chen, Carmel Majidi, Robert J. Wood, Radhika Nagpal
  • Publication number: 20140257091
    Abstract: Aspects of the present disclosure are directed to master-slave apparatuses as well as methods of making and implementing the same. As consistent with one or more embodiments, an apparatus includes a master platform having a manipulation section, and a slave platform mechanically coupled to the master platform and having an interventional-delivery section that secures an interventional tool. The slave platform moves in accordance to three-dimensional movement of the master platform, via supports having a portion thereof fixed relative to the other supports. Each support operates with a respective one of the master and slave platforms for effecting three-dimensional movement of the slave platform, in response to and while tracking (e.g., transmitting) the movement of the master platform, thereby providing control over the interventional tool via the manipulation section of the master platform.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 11, 2014
    Inventors: Mark R. Cutkosky, Bruce L. Daniel, Santhi Elayaperumal, Pierre Renaud, Yong-Lae Park
  • Publication number: 20140238153
    Abstract: An elastic strain sensor can be incorporated into an artificial skin that can sense flexing by the underlying support structure of the skin to detect and track motion of the support structure. The unidirectional elastic strain sensor can be formed by filling two or more channels in an elastic substrate material with a conductive liquid. At the ends of the channels, a loop port connects the channels to form a serpentine channel. The channels extend along the direction of strain and the loop portions have sufficiently large cross-sectional area in the direction transverse to the direction of strain that the sensor is unidirectional. The resistance is measured at the ends of the serpentine channel and can be used to determine the strain on the sensor. Additional channels can be added to increase the sensitivity of the sensor. The sensors can be stacked on top of each other to increase the sensitivity of the sensor.
    Type: Application
    Filed: September 24, 2012
    Publication date: August 28, 2014
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Robert J. Wood, Yong-Lae Park, Carmel S. Majidi, Bor-rong Chen, Leia Stirling, Connor James Walsh, Radhika Nagpal, Diana Young, Yigit Menguc
  • Patent number: 8649847
    Abstract: A biopsy needle has a central axis and includes one or more sensing regions, each sensing region formed by a plurality of sensing optical fibers located over a particular extent of said central axis and inside the outer shell of the needle. The sensing optical fibers are coupled to a wavelength interrogator. A steerable catheter has a central axis and outer shell, the outer shell coupled to a plurality of optical fibers in sensing regions and actuation regions, the sensing regions formed over particular extents of the central axis by bonding gratings to the inner surface of the outer shell, and the actuation regions formed by coupling optical energy into shape memory alloys bonded to the outer shell.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: February 11, 2014
    Assignee: Intelligent Fiber Optic Systems, Inc.
    Inventors: Yong-Lae Park, Richard James Black, Behzad Moslehi, Mark R. Cutkosky, Santhi Elayaperumal, Bruce Daniel, Alan Yeung, Vahid Sotoudeh