Patents by Inventor Yong Poo Chia

Yong Poo Chia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6964881
    Abstract: The present invention defines a packaging implementation providing a multichip multilayer system on a chip solution. Greater integration of a plurality and variety of known good die are contained within cavities formed in a separate substrate is achieved. Additional redistribution and interconnect layers above the multichip configuration may be formed with the redistribution layers terminating in electrical connections such as conductive bumps or balls. In one embodiment, the cavities of the substrate receive signal device connections, such as conductive bumps, of a plurality of semiconductor dice in a flip-chip configuration. A portion of the back surface of the substrate is then removed to a depth sufficient to expose the conductive bumps. In another embodiment, the cavities receive the semiconductor dice with the active surface of the semiconductor dice facing up, wherein metal layer connections are formed and coupled bond pads or other electrical connectors of the semiconductor dice.
    Type: Grant
    Filed: August 27, 2002
    Date of Patent: November 15, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Swee Kwang Chua, Siu Waf Low, Yong Poo Chia, Meow Koon Eng, Yong Loo Neo, Suan Jeung Boon, Suangwu Huang, Wei Zhou
  • Patent number: 6958537
    Abstract: A semiconductor device package is disclosed. The semiconductor device package may include a variety of semiconductor dice, thereby providing a system on a chip solution. The semiconductor dice are attached to connection locations associated with a conductive trace layer such as through flip-chip technology. A plurality of circuit connection elements is also coupled to the conductive trace layer, either directly or through additional, intervening conductive trace layers. An encapsulation layer may be formed over the dice and substrate. Portions of the circuit connection elements remain exposed through the encapsulation layer for connection to external devices. A plurality of conductive bumps may be formed, each conductive bump being disposed atop an exposed portion of a circuit connection element, to facilitate electrical connection with an external device.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: October 25, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Meow Koon Eng, Yong Poo Chia, Yong Loo Neo, Suan Jeung Boon, Siu Waf Low, Swee Kwang Chua, Suangwu Huang
  • Publication number: 20050116337
    Abstract: The present invention defines a packaging implementation providing a multichip multilayer system on a chip solution. Greater integration of a plurality and variety of known good die contained within cavities formed in a separate substrate is achieved. Additional redistribution and interconnect layers above the multichip configuration may be formed with the redistribution layers terminating in electrical connections such as conductive bumps or balls. In one embodiment, the substrate cavities receive signal device connections, such as conductive bumps, of a plurality of semiconductor dice in a flip-chip configuration. A portion of the substrate's back surface is then removed to a depth sufficient to expose the conductive bumps. In another embodiment, the cavities receive the semiconductor dice with their active surface facing up wherein metal layer connections are formed and coupled to bond pads or other electrical connectors of the semiconductor dice.
    Type: Application
    Filed: January 3, 2005
    Publication date: June 2, 2005
    Inventors: Swee Kwang Chua, Siu Waf Low, Yong Poo Chia, Meow Koon Eng, Yong Loo Neo, Suan Jeung Boon, Shuangwu Huang, Wei Zhou
  • Patent number: 6882021
    Abstract: Packaged microelectronic devices and methods of packaging microelectronic devices are disclosed herein. In one embodiment, the device includes an image sensor die having a first side with a bond-pad, an active area on the first side, and a second side opposite the first side. The device further includes a window at the first side of the image sensor die and a lead mounted to the second side of the image sensor die. The window is radiation transmissive and positioned over the active area of the image sensor die. The lead is electrically coupled to the bond-pad on the image sensor die.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: April 19, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Suan Jeung Boon, Yong Poo Chia, Min Yu Chan, Meow Koon Eng, Siu Waf Low, Swee Kwang Chua
  • Patent number: 6856155
    Abstract: A testing scheme for ball-grid array devices of different sizes where the same ball-grid pattern may be tested using the same set of test adapters. A testing scheme includes providing a plurality of devices having a predetermined pattern of solder balls attached, providing a plurality of adapters secured to a test board, each of the adapters including a plurality of test contacts arranged in a pattern corresponding to the predetermined pattern of solder balls, removably attaching the plurality of devices to a device holding apparatus such that the predetermined pattern of solder balls on the devices corresponds to the predetermined pattern of test contacts on the plurality of adapters, then positioning the device holding apparatus to bring the plurality of solder balls in contact with the plurality of test contacts.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: February 15, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Wuu Yean Tay, Yong Kian Tan, Yong Poo Chia, Siu Waf Low, Suan Jeung Boon, Soon Huat Goh
  • Publication number: 20040238909
    Abstract: Packaged microelectronic devices and methods of packaging microelectronic devices are disclosed herein. In one embodiment, the device includes an image sensor die having a first side with a bond-pad, an active area on the first side, and a second side opposite the first side. The device further includes a window at the first side of the image sensor die and a lead mounted to the second side of the image sensor die. The window is radiation transmissive and positioned over the active area of the image sensor die. The lead is electrically coupled to the bond-pad on the image sensor die.
    Type: Application
    Filed: August 29, 2003
    Publication date: December 2, 2004
    Inventors: Suan Jeung Boon, Yong Poo Chia, Min Yu Chan, Meow Koon Eng, Siu Waf Low, Swee Kwang Chua
  • Patent number: 6825553
    Abstract: The present invention defines a packaging implementation providing a multichip multilayer system on a chip solution. Greater integration of a plurality and variety of known good die contained within cavities formed in a separate substrate is achieved. Additional redistribution and interconnect layers above the multichip configuration may be formed with the redistribution layers terminating in electrical connections such as conductive bumps or balls. In one embodiment, the substrate cavities receive signal device connections, such as conductive bumps, of a plurality of semiconductor dice in a flip-chip configuration. A portion of the substrate's back surface is then removed to a depth sufficient to expose the conductive bumps. In another embodiment, the cavities receive the semiconductor dice with their active surface facing up wherein metal layer connections are formed and coupled to bond pads or other electrical connectors of the semiconductor dice.
    Type: Grant
    Filed: September 5, 2003
    Date of Patent: November 30, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Swee Kwang Chua, Siu Waf Low, Yong Poo Chia, Meow Koon Eng, Yong Loo Neo, Suan Jeung Boon, Suangwu Huang, Wei Zhou
  • Publication number: 20040229400
    Abstract: The present invention defines a packaging implementation providing a multichip multilayer system on a chip solution. Greater integration of a plurality and variety of known good die contained within cavities formed in a separate substrate is achieved. Additional redistribution and interconnect layers above the multichip configuration may be formed with the redistribution layers terminating in electrical connections such as conductive bumps or balls. In one embodiment, the cavities of the substrate receive signal device connections, such as conductive bumps, of a plurality of semiconductor dice in a flip-chip configuration. A portion of the back surface of the substrate is then removed to a depth sufficient to expose the conductive bumps. In another embodiment, the cavities receive the semiconductor dice with the active surface of the semiconductor dice facing up wherein metal layer connections are formed and coupled to bond pads or other electrical connectors of the semiconductor dice.
    Type: Application
    Filed: June 22, 2004
    Publication date: November 18, 2004
    Inventors: Swee Kwang Chua, Siu Waf Low, Yong Poo Chia, Meow Koon Eng, Yong Loo Neo, Suan Jeung Boon, Shuangwu Huang, Wei Zhou
  • Publication number: 20040221451
    Abstract: A method for packaging integrated circuit chips (die) is described that includes providing a base substrate with package level contacts, coating a base substrate with adhesive, placing dies on the adhesive, electrically connecting the die to the package level contacts, and removing the backside of the base substrate to expose the backside of the package level contacts. Accordingly, an essentially true chip scale package is formed. Multi-chip modules are formed by filling gaps between the chips with an encapsulant. In an embodiment, chips are interconnected by electrical connections between package level contacts in the base substrate. In an embodiment, substrates each having chips are adhered back-to-back with through vias formed in aligned saw streets to interconnect the back-to-back chip assembly.
    Type: Application
    Filed: December 23, 2003
    Publication date: November 11, 2004
    Applicant: Micron Technology, Inc.
    Inventors: Yong Poo Chia, Low Siu Waf, Suan Jeung Boon, Eng Meow Koon, Swee Kwang Chua
  • Publication number: 20040084741
    Abstract: A leadless image sensor package and methods for its assembly. In a first embodiment, an image sensor chip is mounted within a bottom-side cavity of a package shell in a flip-chip manner such that sensing circuitry on the image sensor chip is exposed through an aperture in the top side of the package shell. A transparent encapsulant material is deposited within the aperture to encase interconnect bonds between the package shell and the image sensor chip. A transparent lid is held in place over the aperture by the encapsulant material. The back surface of the image sensor chip is left exposed. In a second embodiment particularly suitable for high-end image sensors, an encapsulant material is not required. Instead, a backing cap is hermetically sealed to a ledge surface in the package shell to cover the bottom-side cavity. A compression member formed on the backing cap contacts the image sensor chip and maintains interconnect bond integrity.
    Type: Application
    Filed: October 23, 2003
    Publication date: May 6, 2004
    Inventors: Suan Jeung Boon, Yong Poo Chia, Yong Loo Neo, Swee Kwang Chua, Siu Waf Low
  • Publication number: 20040046250
    Abstract: The present invention defines a packaging implementation providing a multichip multilayer system on a chip solution. Greater integration of a plurality and variety of known good die contained within cavities formed in a separate substrate is achieved. Additional redistribution and interconnect layers above the multichip configuration may be formed with the redistribution layers terminating in electrical connections such as conductive bumps or balls. In one embodiment, the substrate cavities receive signal device connections, such as conductive bumps, of a plurality of semiconductor dice in a flip-chip configuration. A portion of the substrate's back surface is then removed to a depth sufficient to expose the conductive bumps. In another embodiment, the cavities receive the semiconductor dice with their active surface facing up wherein metal layer connections are formed and coupled to bond pads or other electrical connectors of the semiconductor dice.
    Type: Application
    Filed: September 5, 2003
    Publication date: March 11, 2004
    Inventors: Swee Kwang Chua, Siu Waf Low, Yong Poo Chia, Meow Koon Eng, Yong Loo Neo, Suan Jeung Boon, Shuangwu Huang, Wei Zhou
  • Publication number: 20040041221
    Abstract: A leadless image sensor package and methods for its assembly. In a first embodiment, an image sensor chip is mounted within a bottom side cavity of a package shell in a flip-chip manner such that sensing circuitry on the image sensor chip is exposed through an aperture in the top side of the package shell. A transparent encapsulant material is deposited within the aperture to encase interconnect bonds between the package shell and the image sensor chip. A transparent lid is held in place over the aperture by the encapsulant material. The back surface of the image sensor chip is left exposed. In a second embodiment particularly suitable for high-end image sensors, an encapsulant material is not required. Instead, a backing cap is hermetically sealed to a ledge surface in the package shell to cover the bottom side cavity. A compression member formed on the backing cap contacts the image sensor chip and maintains interconnect bond integrity.
    Type: Application
    Filed: August 28, 2002
    Publication date: March 4, 2004
    Inventors: Suan Jeung Boon, Yong Poo Chia, Yong Loo Neo, Swee Kwang Chua, Siu Waf Low
  • Publication number: 20040042190
    Abstract: A semiconductor device package and method of fabricating the same. The semiconductor device package includes The package may include a variety of semiconductor dice thereby providing a system on a chip solution. The semiconductor dice are attached to connection locations associated with a conductive trace layer such as through flip-chip technology. A plurality of circuit connection elements are also coupled to the conductive trace layer, either directly or through additional, intervening conductive trace layers. An encapsulation layer may be formed over the dice and substrate. Portions of the circuit connection elements remain exposed through the encapsulation layer for connection to external devices. A plurality of conductive bumps may be formed, each conductive bump being disposed atop an exposed portion of a circuit connection element, to facilitate electrical connection with an external device.
    Type: Application
    Filed: August 27, 2002
    Publication date: March 4, 2004
    Inventors: Meow Koon Eng, Yong Poo Chia, Yong Loo Neo, Suan Jeung Boon, Siu Waf Low, Swee Kwang Chua, Shuangwu Huang
  • Publication number: 20040043533
    Abstract: The present invention defines a packaging implementation providing a multi-chip multi-layer system on a chip solution. Greater integration of a plurality and variety of known good die are contained within cavities formed in a separate substrate. Additional redistribution and interconnect layers above the multi-chip configuration may be formed with the redistribution layers terminating in electrical connections such as conductive bumps or balls. In one embodiment the cavities of the substrate receive signal device connections, such as conductive bumps, of a plurality of dice in a flip-chip configuration. A portion of the back surface of the substrate is then removed to a depth sufficient to expose the conductive bumps. In another embodiment the cavities receive the dice with the active surface of the dice facing up wherein metal layer connections are formed and coupled bond pads or other electrical connectors of the dice.
    Type: Application
    Filed: August 27, 2002
    Publication date: March 4, 2004
    Inventors: Swee Kwang Chua, Siu Waf Low, Yong Poo Chia, Meow Koon Eng, Yong Loo Neo, Suan Jeung Boon, Shuangwu Huang, Wei Zhou
  • Publication number: 20040032273
    Abstract: The present invention provides systems and methods which overcome the shortcomings of the prior art by providing a testing scheme wherein ball-grid array devices of different sizes but the same ball-grid pattern may be efficiently and cost-effectively tested using the same set of test adapters.
    Type: Application
    Filed: October 7, 2002
    Publication date: February 19, 2004
    Inventors: Wuu Yean Tay, Yong Kian Tan, Yong Poo Chia, Siu Waf Low, Suan Jeung Boon, Soon Huat Goh
  • Publication number: 20030232488
    Abstract: Through vias in a substrate are formed by creating a trench in a top side of the substrate and at least one trench in the back side of the substrate. The sum of the depths of the trenches at least equals the height of the substrate. The trenches cross at intersections, which accordingly form the through vias from the top side to the back side. The through vias are filled with a conductor to form contacts on both sides and the edge of the substrate. Contacts on the backside are formed at each of the trench. The through vias from the edge contacts. Traces connect bond pads to the conductor in the through via. Some traces are parallel to the back side traces. Some traces are skew to the back side traces. The substrate is diced to form individual die.
    Type: Application
    Filed: August 28, 2002
    Publication date: December 18, 2003
    Inventors: Swee Kwang Chua, Suan Jeung Boon, Yong Poo Chia, Yong Loo Neo
  • Publication number: 20030227079
    Abstract: A wafer level package, and a semiconductor wafer, electronic system, and a memory module that include one or more of the wafer level packages, and methods of fabricating the die packages on a wafer level, and integrated circuit modules that include one or more packages are provided. In one embodiment, the die package comprises a redistribution layer interconnecting two or more dies disposed on a substrate, typically a semiconductor wafer, the redistribution layer including a first trace connecting a bond pad of each of two dies, and a second trace connecting one of the bond pads of the two dies to a ball pad. The die package of the invention can comprise memory devices such as static random access memories (SRAMs), and can be incorporated into a variety of electronic systems as part of a memory package such as single in line memory modules (SIMMs) or dual in line memory modules.
    Type: Application
    Filed: June 11, 2002
    Publication date: December 11, 2003
    Applicant: Micron Technology, Inc.
    Inventors: Yong Poo Chia, Suan Jeung Boon, Siu Waf Low, Yong Loo Neo, Bok Leng Ser