Patents by Inventor Yong Sub Yoon

Yong Sub Yoon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11335951
    Abstract: An improved, low porosity, solid electrolyte membrane and a method of manufacturing the solid electrolyte membrane are provided. The low porosity, solid electrolyte membrane significantly improves both mechanical strength and porosity of the membrane, inhibits the growth of lithium dendrites (Li dendrites), and thereby maintains and maximizes electrochemical stability of an all-solid-state battery. This is accomplished by wet-coating a sulfide or oxide solid electrolyte particle with a thermoplastic resin, or a mixture of the thermoplastic resin and a thermosetting resin, using a solvent to prepare a composite and hot-pressing the composite at a relatively low temperature and at a low pressure.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: May 17, 2022
    Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION, ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Oh Min Kwon, Hong Seok Min, Yong Sub Yoon, Kyung Su Kim, Dae Yang Oh, Yoon Seok Jung, Young Jin Nam, Sung Hoo Jung
  • Publication number: 20220115707
    Abstract: An apparatus for manufacturing an all-solid-state battery includes: a mold unit which includes a first hole extending vertically so as to have a shape and a width identical with a shape and a width of the all-solid-state battery, and a second hole extending horizontally so as to horizontally communicate with the first hole; a first pressing unit which includes a first protrusion member corresponding to the first hole, which is coupled with an upper part of the mold unit, and which presses downwards raw materials of the all-solid-state battery filling the first hole, and a second pressing unit which includes a second protrusion member corresponding to the first hole, which is coupled with a lower part of the mold unit, and which presses upwards the raw materials of the all-solid-state battery filling the first hole.
    Type: Application
    Filed: August 10, 2021
    Publication date: April 14, 2022
    Inventors: Ju Yeong Seong, In Woo Song, Hong Seok Min, Yong Sub Yoon, Yun Sung Kim, Yong Jun Jang, Sung Woo Noh, In Chul Kim, A Reum Ha, Heon Cheol Shin, Yong Guk Gwon, Ji Ung Jeong, Seong Hyeok Ha
  • Publication number: 20220109160
    Abstract: The present disclosure relates to a method for producing a cathode material and a cathode including a cathode material produced thereby. More specifically, the present disclosure provides a production method which improves process efficiency while improving cathode performance in consideration of the practical use of an all-solid-state battery in the production of a cathode for the all-solid-state battery.
    Type: Application
    Filed: September 17, 2021
    Publication date: April 7, 2022
    Inventors: Yong Sub Yoon, Hong Seok Min, Hajime Tsuchiya, Yuki Sasaki
  • Publication number: 20220069298
    Abstract: A cathode active material for an all-solid-state battery includes: active material particles; and a coating layer covering at least a portion of the surface of the active material particles, wherein the coating layer includes lithium (Li), niobium (Nb), and at least one element selected from the group consisting of vanadium (V), zirconium (Zr) and combinations thereof.
    Type: Application
    Filed: May 26, 2021
    Publication date: March 3, 2022
    Applicants: HYUNDAI MOTOR COMPANY, KIA CORPORATION, Ulsan National Institute of Science and Technology
    Inventors: A Reum HA, Ju Yeong SEONG, Yong Gu KIM, In Woo SONG, Hong Seok MIN, Yong Sub YOON, Yun Sung KIM, Sung Woo NOH, Yong Jun JANG, Sang Heon LEE, Jae Phil CHO, Hyo Myoung LEE
  • Patent number: 11258057
    Abstract: Disclosed is a solid electrolyte for an all-solid battery and a method of preparing the same. Particularly, the solid electrolyte may have an argyrodite-type crystal structure.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: February 22, 2022
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Ju Yeong Seong, Yong Jun Jang, Pil Gun Oh, Yong Sub Yoon, Jae Min Lim, Sa Heum Kim, Hong Seok Min
  • Publication number: 20210280904
    Abstract: The present invention relates to a nitrogen-doped sulfide-based solid electrolyte for all-solid batteries. The a nitrogen-doped sulfide-based solid electrolyte for all-solid batteries includes a compound with an argyrodite-type crystal structure represented by the following Formula 1: LiaPSbNcXd ??[Formula 1] wherein 6?a?7, 3<b<6, 0<c?1, 0<d?2, and each X is the same or different halogen atom selected from the group consisting of chlorine (Cl), bromine (Br), and iodine (I).
    Type: Application
    Filed: May 14, 2021
    Publication date: September 9, 2021
    Inventors: Ju Yeong Seong, Yong Jun Jang, Hong Seok Min, Sa Heum Kim, Yong Sub Yoon, Pil Gun Oh, Dong Wook Shin, Chan Hwi Park, Jin Oh Son
  • Patent number: 11114690
    Abstract: Disclosed are a method of manufacturing a solid electrolyte, a solid electrolyte manufactured using the method, and an all-solid cell including the solid electrolyte. The method includes preparing an electrolyte admixture including a solid electrolyte precursor and a solvent, drying the electrolyte admixture and removing the solvent from the electrolyte admixture to form a dry electrolyte mixture, and heat-treating the dry electrolyte mixture to form a crystallized solid electrolyte.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: September 7, 2021
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Yong Jun Jang, Pil Gun Oh, Hong Seok Min, Yong Sub Yoon, Sa Heum Kim, Ju Yeong Seong
  • Publication number: 20210273257
    Abstract: The present invention relates to a nitrogen-doped sulfide-based solid electrolyte for all-solid batteries. The a nitrogen-doped sulfide-based solid electrolyte for all-solid batteries includes a compound with an argyrodite-type crystal structure represented by the following Formula 1: LiaPSbNcXd??[Formula 1] wherein 6?a?7, 3<b<6, 0<c?1, 0<d?2, and each X is the same or different halogen atom selected from the group consisting of chlorine (Cl), bromine (Br), and iodine (I).
    Type: Application
    Filed: May 14, 2021
    Publication date: September 2, 2021
    Inventors: Ju Yeong Seong, Yong Jun Jang, Hong Seok Min, Sa Heum Kim, Yong Sub Yoon, Pil Gun Oh, Dong Wook Shin, Chan Hwi Park, Jin Oh Son
  • Publication number: 20210273258
    Abstract: The present invention relates to a nitrogen-doped sulfide-based solid electrolyte for all-solid batteries. The a nitrogen-doped sulfide-based solid electrolyte for all-solid batteries includes a compound with an argyrodite-type crystal structure represented by the following Formula 1: LiaPSbNcXd??[Formula 1] wherein 6?a?7, 3?b?6, 0?c?1, 0?d?2, and each X is the same or different halogen atom selected from the group consisting of chlorine (Cl), bromine (Br), and iodine (I).
    Type: Application
    Filed: May 14, 2021
    Publication date: September 2, 2021
    Inventors: Ju Yeong Seong, Yong Jun Jang, Hong Seok Min, Sa Heum Kim, Yong Sub Yoon, Pil Gun Oh, Dong Wook Shin, Chan Hwi Park, Jin Oh Son
  • Patent number: 11088390
    Abstract: Disclosed are a positive electrode active material capable of suppressing a reaction between a core and a solid electrolyte, a method of manufacturing the same and an all-solid battery including the same. Provided is a positive electrode active material for all-solid batteries including a core comprising a lithium-containing metal oxide, and a coating layer comprising LiI applied to the surface of the core.
    Type: Grant
    Filed: June 9, 2020
    Date of Patent: August 10, 2021
    Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION, UNIST (ULSAN NAT. INST. OF SCIENCE AND TECHNOLOGY)
    Inventors: Oh Min Kwon, Hong Seok Min, Yong Sub Yoon, Kyung Su Kim, Yoon Seok Jung, Young Jin Nam, Dae Yang Oh, Sung Hoo Jung
  • Publication number: 20210194038
    Abstract: Disclosed are an all-solid battery and a method of manufacturing the same. The all-solid battery as disclosed herein may include current collectors having the same size for a cathode and an anode, the elongation areas of the cathode and the anode may be controlled due to the ductility of the current collectors during a pressing process. Thus, areas of the anode and the cathode may become different from each other upon the pressing, thus preventing a short-circuit fault from being formed at the edge portion thereof in the pressing process.
    Type: Application
    Filed: February 16, 2021
    Publication date: June 24, 2021
    Inventors: Pil Gun Oh, Yong Sub Yoon
  • Patent number: 11011777
    Abstract: The present invention relates to a nitrogen-doped sulfide-based solid electrolyte for all-solid batteries. The a nitrogen-doped sulfide-based solid electrolyte for all-solid batteries includes a compound with an argyrodite-type crystal structure represented by the following Formula 1: LiaPSbNcXd??[Formula 1] wherein 6?a?7, 3<b<6, 0<c?1, 0<d?2, and each X is the same or different halogen atom selected from the group consisting of chlorine (Cl), bromine (Br), and iodine (I).
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: May 18, 2021
    Assignees: Hyundai Motor Company, Kia Motors Corporation, IUCF-HYU (Industry-University Cooperation Foundation Hanyang University)
    Inventors: Ju Yeong Seong, Yong Jun Jang, Hong Seok Min, Sa Heum Kim, Yong Sub Yoon, Pil Gun Oh, Dong Wook Shin, Chan Hwi Park, Jin Oh Son
  • Patent number: 11005118
    Abstract: A solid electrolyte sheet for all-solid batteries has a carrier film including poly (methyl methacrylate) and an ionic conductive material, and has a solid electrolyte slurry coated on the carrier film. The solid electrolyte sheet and an all-solid battery including such a solid electrolyte sheet can realize formation of a solid electrolyte layer as a thin film and can prevent a short-circuit upon stacking a positive electrode and a negative electrode. The solid electrolyte sheet and the all-solid battery can prevent yield decrease resulting from a short-circuit of the all-solid battery and can minimize supernumerary pores due to ionic conductive material incorporated into the solid electrolyte layer to suppress formation of lithium dendrites.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: May 11, 2021
    Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION, INDUSTRY-UNIVERSITY COOPERATION FOUNDATION HANYANG UNIVERSITY
    Inventors: Hong Seok Min, Yong Sub Yoon, O Min Kwon, Pil Gun Oh, Dong Wook Shin, Sung Woo Noh
  • Patent number: 10991975
    Abstract: Disclosed is a method of manufacturing a solid electrolyte for an all-solid battery. The method may include preparing a solvent admixture comprising a first polar organic solvent containing a cyano group and a second polar organic solvent containing a hydroxyl group, preparing an electrolyte admixture by dissolving Li2S, P2S5 and LiCl in the solvent admixture, and preparing a solid electrolyte by stirring the electrolyte admixture. The method may further include precipitating the solid electrolyte by evaporating the solvent admixture, and heat treating the precipitated solid electrolyte. In particular, the solvent admixture may include the second polar organic solvent in an amount of about 0.01 to 0.03 wt % based on the total weight of the first polar organic solvent.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: April 27, 2021
    Assignees: Hyundai Motor Company, Kia Motors Corporation, IUCF-HYU (Industry-University Cooperation Foundation Hanyang University)
    Inventors: Ju Yeong Seong, Hong Seok Min, Yong Jun Jang, Yong Sub Yoon, Pil Gun Oh, Dong Wook Shin, Sun Ho Choi, Jong Yeob Park
  • Patent number: 10950885
    Abstract: Disclosed are an all-solid battery and a method of manufacturing the same. The all-solid battery as disclosed herein may include current collectors having the same size for a cathode and an anode, the elongation areas of the cathode and the anode may be controlled due to the ductility of the current collectors during a pressing process. Thus, areas of the anode and the cathode may become different from each other upon the pressing, thus preventing a short-circuit fault from being formed at the edge portion thereof in the pressing process.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: March 16, 2021
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Pil Gun Oh, Yong Sub Yoon
  • Patent number: 10903518
    Abstract: Disclosed is a method of preparing a sulfide-based solid electrolyte for an all-solid battery having an argyrodite-type crystal structure through a solution process. The method including obtaining a precursor solution by dissolving lithium sulfide, phosphorus sulfide and a halogen compound in a solvent, obtaining a precursor powder by removing the solvent from the precursor solution. Solid electrolyte for an all-solid battery can be produced by such method.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: January 26, 2021
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Yong Jun Jang, Pil Gun Oh, Hong Seok Min, Yong Sub Yoon, Sa Heum Kim, Ju Yeong Seong
  • Publication number: 20210005929
    Abstract: An improved, low porosity, solid electrolyte membrane and a method of manufacturing the solid electrolyte membrane are provided. The low porosity, solid electrolyte membrane significantly improves both mechanical strength and porosity of the membrane, inhibits the growth of lithium dendrites (Li dendrites), and thereby maintains and maximizes electrochemical stability of an all-solid-state battery. This is accomplished by wet-coating a sulfide or oxide solid electrolyte particle with a thermoplastic resin, or a mixture of the thermoplastic resin and a thermosetting resin, using a solvent to prepare a composite and hot-pressing the composite at a relatively low temperature and at a low pressure.
    Type: Application
    Filed: September 22, 2020
    Publication date: January 7, 2021
    Inventors: Oh Min Kwon, Hong Seok Min, Yong Sub Yoon, Kyung Su Kim, Dae Yang Oh, Yoon Seok Jung, Young Jin Nam, Sung Hoo Jung
  • Publication number: 20200358098
    Abstract: A binder solution for an all-solid-state battery, an electrode slurry for an all-solid-state battery including the same and a method of manufacturing an all-solid-state battery using the same, and more particularly to a binder solution for an all-solid-state battery, in which a polymer binder configured such that a non-polar functional group is bonded to the end of a polar functional group is used, whereby the polar functional group is provided by a deprotection mechanism of the polymer binder through a thermal treatment, thus increasing adhesion between electrode materials to thereby improve battery capacity and enabling a wet process to thereby reduce manufacturing costs, an electrode slurry for an all-solid-state battery including the same and a method of manufacturing an all-solid-state battery using the same.
    Type: Application
    Filed: December 5, 2019
    Publication date: November 12, 2020
    Inventors: Sang Mo Kim, Sang Heon Lee, Yong Sub Yoon, Jae Min Lim, Ju Yeong Seong, Jin Soo Kim, Jang Wook Choi, Kyu Lin Lee, Ji Eun Lee
  • Patent number: 10818970
    Abstract: Disclosed is an all-solid battery, including a cathode, an anode, and a solid electrolyte layer. The solid electrolyte layer may include a first solid electrolyte having an ionic conductivity ranging from greater than about 5×10?3 S/cm to about 1×10?1 S/cm and a second solid electrolyte having an ionic conductivity ranging from greater than about 5×10?4 S/cm to about 1×10?2 S/cm.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: October 27, 2020
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Yong Sub Yoon, Yun Sung Kim, Pil Gun Oh, Hong Seok Min, Oh Min Kwon
  • Patent number: 10818971
    Abstract: An improved, low porosity, solid electrolyte membrane and a method of manufacturing the solid electrolyte membrane are provided. The low porosity, solid electrolyte membrane significantly improves both mechanical strength and porosity of the membrane, inhibits the growth of lithium dendrites (Li dendrites), and thereby maintains and maximizes electrochemical stability of an all-solid-state battery. This is accomplished by wet-coating a sulfide or oxide solid electrolyte particle with a thermoplastic resin, or a mixture of the thermoplastic resin and a thermosetting resin, using a solvent to prepare a composite and hot-pressing the composite at a relatively low temperature and at a low pressure.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: October 27, 2020
    Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION, ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Oh Min Kwon, Hong Seok Min, Yong Sub Yoon, Kyung Su Kim, Dae Yang Oh, Yoon Seok Jung, Young Jin Nam, Sung Hoo Jung