Patents by Inventor Yongdong Wang
Yongdong Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20060217911Abstract: A method for analyzing data from a mass spectrometer comprising obtaining calibrated continuum spectral data by processing raw spectral data; obtaining library spectral data which has been processed to form calibrated library data; and performing a least squares fit, preferably using matrix operations (equation 1), between the calibrated continuum spectral data and the calibrated library data to determine concentrations of components in a sample which generated the raw spectral data. A mass spectrometer system (FIG. 1) that operates in accordance with the method, a data library of transformed mass spectra, and a method for producing the data library.Type: ApplicationFiled: April 28, 2004Publication date: September 28, 2006Inventor: Yongdong Wang
-
Publication number: 20060169883Abstract: A method for calibrating and analyzing data from a mass spectrometer, comprising the steps of acquiring raw profile mode data containing mass spectral responses of ions with or without isotopes; calculating theoretical isotope distributions for each of at least one calibration ion based on elemental composition; convoluting the theoretical isotope distributions with an initial peak shape function to obtain theoretical isotope profiles for each ion; constructing a peak component matrix including the theoretical isotope profiles for calibration ions as peak components; performing a regression analysis between the raw profile mode mass spectral data and the peak component matrix; and reporting the regression coefficients as the relative concentrations for each of the components. A mass spectrometry system operated in accordance with the method and a computer readable medium having program code thereon for performing the method.Type: ApplicationFiled: October 28, 2005Publication date: August 3, 2006Inventors: Yongdong Wang, Ming Gu
-
Publication number: 20060156792Abstract: A multi-dimensional separation system having parallel traps for effluent from prior separation dimension and parallel latter separation columns, the latter columns being coupled to the traps. At least one trap enriches components of effluent while at least one other trap is releasing trapped components to a detector, which may be a mass spectrometer. Internal standards may be provided, as in a release solvent, for the calibration of one of the chromatographic columns and the detection system. The system may comprise a multiple channel selector for multiple streams, wherein all of the streams flow at the same time.Type: ApplicationFiled: October 12, 2005Publication date: July 20, 2006Inventor: Yongdong Wang
-
Publication number: 20060088444Abstract: In a luminescence detecting apparatus and method for analyzing luminescent samples, luminescent samples are placed in a plurality of sample wells in a tray, and the tray is placed in a visible-light impervious chamber containing a charge coupled device camera. In the chamber, light from the luminescent samples pass through a collimator, a Fresnel field lens, an infrared filter, and a camera lens, whereupon a focused image is created by the optics on the camera. The use of an infrared filter suppresses stray IR radiation resulting from plate phosphorescence (which can result in abnormally high backgrounds and/or alteration of the image received by the camera).Type: ApplicationFiled: October 18, 2005Publication date: April 27, 2006Inventors: Michael Gambini, John Voyta, John Atwood, Susan Atwood Stone, Bruce DeSimas, Edward Lakatos, Jeff Levi, Israel Metal, George Sabak, Yongdong Wang
-
Patent number: 6983213Abstract: There is provided a method for obtaining at least one calibration filter for a Mass Spectrometry (MS) instrument system. Measured isotope peak cluster data in a mass spectral range is obtained for a given calibration standard. Relative isotope abundances and actual mass locations of isotopes corresponding thereto are calculated for the given calibration standard. Mass spectral target peak shape functions centered within respective mass spectral ranges are specified. Convolution operations are performed between the calculated relative isotope abundances and the mass spectral target peak shape functions to form calculated isotope peak cluster data. A deconvolution operation is performed between the measured isotope peak cluster data and the calculated isotope peak cluster data after the convolution operations to obtain the at least one calibration filter.Type: GrantFiled: October 20, 2003Date of Patent: January 3, 2006Assignee: Cerno Bioscience LLCInventor: Yongdong Wang
-
Publication number: 20050162657Abstract: An optical resonance analysis system comprising a sensor means (60) and an illumination means (400) for generating non-monochromatic illumination. The illumination means (400) further comprises a means for generating illumination at a plurality of angles, a lens system for projecting said illumination at said plurality of angles (390) and a dispersive device (380) for dispersing said illumination at each of said plurality of angles so that there is a correlation between said plurality of angles and the wavelengths of said illumination such that a resonance condition is generated on said sensor mean (60) for all wavelengths generated by said non-monochromatic source simultaneously. The analysis system also comprises a detection means (90) for detecting the reflected or transmitted illumination. Another embodiment comprises an anamorphic imaging means (120).Type: ApplicationFiled: March 7, 2005Publication date: July 28, 2005Applicant: Applera CorporationInventors: Dar Bahatt, Jerry Cahill, Koichi Nishikida, Enrico Picozza, Paul Saviano, David Tracy, Yongdong Wang
-
Publication number: 20050086017Abstract: There is provided a method for obtaining at least one calibration filter for a Mass Spectrometry (MS) instrument system. Measured isotope peak cluster data in a mass spectral range is obtained for a given calibration standard. Relative isotope abundances and actual mass locations of isotopes corresponding thereto are calculated for the given calibration standard. Mass spectral target peak shape functions centered within respective mass spectral ranges are specified. Convolution operations are performed between the calculated relative isotope abundances and the mass spectral target peak shape functions to form calculated isotope peak cluster data. A deconvolution operation is peformed between the measured isotope peak cluster data and the calculated isotope peak cluster data after the convolution operations to obtain the at least one calibration filter.Type: ApplicationFiled: October 20, 2003Publication date: April 21, 2005Inventor: Yongdong Wang
-
Patent number: 6873417Abstract: An optical resonance analysis system comprising a sensor means (60) and an illumination means (400) for generating non-monochromatic illumination. The illumination means (400) further comprises a means for generating illumination at a plurality of angles, a lens system for projecting said illumination at said plurality of angles (390) and a dispersive device (380) for dispersing said illumination at each of said plurality of angles so that there is a correlation between said plurality of angles and the wavelengths of said illumination such that a resonance condition is generated on said sensor mean (60) for all wavelengths generated by said non-monochromatic source simultaneously. The analysis system also comprises a detection means (90) for detecting the reflected or transmitted illumination. Another embodiment comprises an anamorphic imaging means (120).Type: GrantFiled: April 28, 2003Date of Patent: March 29, 2005Assignee: Applera CorporationInventors: Dar Bahatt, Jerry E. Cahill, Koichi Nishikida, Enrico G. Picozza, Paul G. Saviano, David H. Tracy, Yongdong Wang
-
Patent number: 6865493Abstract: A method and apparatus is provided for detecting an impurity in a sample where an index can be calculated to assess purity in the presence of n major components with signal averaging or noise-filtering automatically built-in. The method and apparatus can be applied to liquid chromatography impurity detection using UV-VIS spectrophotometry based on robust matrix algebra representing the entire spectral space generated by the sample.Type: GrantFiled: July 14, 2003Date of Patent: March 8, 2005Assignee: PerkinElmer Instruments LLCInventor: Yongdong Wang
-
Publication number: 20040014146Abstract: A method and apparatus is provided for detecting an impurity in a sample where an index can be calculated to assess purity in the presence of n major components with signal averaging or noise-filtering automatically built-in. The method and apparatus can be applied to liquid chromatography impurity detection using UV-VIS spectrophotometry based on robust matrix algebra representing the entire spectral space generated by the sample.Type: ApplicationFiled: July 14, 2003Publication date: January 22, 2004Inventor: Yongdong Wang
-
Publication number: 20030210399Abstract: An optical resonance analysis system comprising a sensor means (60) and an illumination means (400) for generating non-monochromatic illumination. The illumination means (400) further comprises a means for generating illumination at a plurality of angles, a lens system for projecting said illumination at said plurality of angles (390) and a dispersive device (380) for dispersing said illumination at each of said plurality of angles so that there is a correlation between said plurality of angles and the wavelengths of said illumination such that a resonance condition is generated on said sensor mean (60) for all wavelengths generated by said non-monochromatic source simultaneously. The analysis system also comprises a detection means (90) for detecting the reflected or transmitted illumination. Another embodiment comprises an anamorphic imaging means (120).Type: ApplicationFiled: April 28, 2003Publication date: November 13, 2003Applicant: Applera CorporationInventors: Dar Bahatt, Jerry E. Cahill, Koichi Nishikida, Enrico G. Picozza, Paul G. Saviano, David H. Tracy, Yongdong Wang
-
Patent number: 6629039Abstract: A method and apparatus is provided for detecting an impurity in a sample where an index can be calculated to assess purity in the presence of n major components with signal averaging or noise-filtering automatically built-in. The method and apparatus can be applied to liquid chromatography impurity detection using UV-VIS spectrophotometry based on robust matrix algebra representing the entire spectral space generated by the sample.Type: GrantFiled: April 27, 2000Date of Patent: September 30, 2003Assignee: PerkinElmer Instruments LLCInventor: Yongdong Wang
-
Publication number: 20030160954Abstract: In a spectroscopic process a sample for producing a test spectral line or spectrum of at least one component contained in the sample is stimulated and the transmitted and/or emitted electromagnetic rays are used to create the test spectral line or spectrum. In order to improve such a spectroscopic process to such an extent that variations of certain parameters, which alter the shape and/or occurrence of a spectral line, are compensated, a comparison spectral line or spectrum of a known comparison material is produced under substantially the same parameters as the sample. The comparison spectral line or spectrum is compared with an ideal comparison spectral line or spectrum in order to calculate a transfer function, and the transfer function is applied to the test spectral line or spectrum in order to calculate a corrected test spectral line or spectrum.Type: ApplicationFiled: February 20, 2003Publication date: August 28, 2003Inventors: Yongdong Wang, Bernhard H. Radziuk, David H. Tracy
-
Patent number: 6600563Abstract: An optical resonance analysis system comprising a sensor means (60) and an illumination means (400) for generating non-monochromatic illumination. The illumination means (400) further comprises a means for generating illumination at a plurality of angles, a lens system for projecting said illumination at said plurality of angles (390) and a dispersive device (380) for dispersing said illumination at each of said plurality of angles so that there is a correlation between said plurality of angles and the wavelengths of said illumination such that a resonance condition is generated on said sensor mean (60) for all wavelengths generated by said non-monochromatic source simultaneously. The analysis system also comprises a detection means (90) for detecting the reflected or transmitted illumination. Another embodiment comprises an anamorphic imaging means (120).Type: GrantFiled: July 17, 2000Date of Patent: July 29, 2003Assignee: Applera CorporationInventors: Dar Bahatt, Jerry E. Cahill, Koichi Nishikida, Enrico G. Picozza, Paul G. Saviano, David H. Tracy, Yongdong Wang
-
Publication number: 20030092194Abstract: A luminescence detecting apparatus and method for analyzing luminescent samples is disclosed. Luminescent samples are placed in a plurality of sample wells in a tray, and the tray is placed in a visible-light impervious chamber containing a charge coupled device camera. The samples may be injected in the wells, and the samples may be injected with buffers and reagents, by an injector. In the chamber, light from the luminescent samples pass through a collimator, a Fresnel field lens, a filter, and a camera lens, whereupon a focused image is created by the optics on the charge-coupled device (CCD) camera. The use of a Fresnel field lens, in combination with a collimator and filter, reduces crosstalk between samples below the level attainable by the prior art. Preferred embodiments of the luminescence detecting apparatus and method disclosed include central processing control of all operations, multiple wavelength filter wheel, and robot handling of samples and reagents.Type: ApplicationFiled: December 20, 2002Publication date: May 15, 2003Inventors: Michael R. Gambini, John C. Voyta, John Atwood, Bruce E. DeSimas, Edward Lakatos, Jeff Levi, Israel Metal, George Sabak, Yongdong Wang
-
Patent number: 6518068Abstract: A luminescence detecting apparatus and method for analyzing luminescent samples is disclosed. Luminescent samples are placed in a plurality of sample wells in a tray, and the tray is placed in a visible-light impervious chamber containing a charge coupled device camera. The samples may be injected in the wells, and the samples may be injected with buffers and reagents, by an injector. In the chamber, light from the luminescent samples pass through a collimator, a Fresnel field lens, a filter, and a camera lens, whereupon a focused image is created by the optics on the charge-coupled device (CCD) camera. The use of a Fresnel field lens, in combination with a collimator and filter, reduces crosstalk between samples below the level attainable by the prior art. Preferred embodiments of the luminescence detecting apparatus and method disclosed include central processing control of all operations, multiple wavelength filter wheel, and robot handling of samples and reagents.Type: GrantFiled: July 21, 2000Date of Patent: February 11, 2003Assignee: Tropix, Inc.Inventors: Michael R. Gambini, John C. Voyta, John Atwood, Bruce E. DeSimas, II, Edward Lakatos, Jeff Levi, Israel Metal, George Sabak, Yongdong Wang
-
Patent number: 6442606Abstract: A method and apparatus are provided for indexing electronic documents that include one or more visible text portions and one or more non-visible text portions. The method includes the step of identifying an electronic document. Once the electronic document is identified, a set of words is selected from a particular tag type that is associated with one or more non-visible text portions of the electronic document. Each word in the selected set of words is compared with words in the one or more visible text portions of the electronic document. An index word set is then determined for the electronic document based on matches between words in the selected set of words and words in the one or more visible text portions of the electronic document.Type: GrantFiled: August 12, 1999Date of Patent: August 27, 2002Assignee: Inktomi CorporationInventors: Ram Subbaroyan, Yongdong Wang, Paul Andre Gauthier, Douglas Michael Cook, Douglass Russell Judd
-
Patent number: 6430513Abstract: Constituents such as oxy- and deoxy-hemoglobin are monitored non-invasively in an animal organ such as a brain with a spectrometric instrument by passing radiation through the organ. Concentrations are computed from the spectral intensities and from a statistical correlation model. To predetermine the correlation model, the procedures are effected for a plurality of organs of a same type with each organ having established concentrations of the selected constituents, and the correlation model is statistically determined from the concentrations and corresponding intensities. For more accuracy computations are normalized to path length which may be determined by utilizing several discrete wavelengths with RF modulations.Type: GrantFiled: January 7, 2000Date of Patent: August 6, 2002Assignee: PerkinElmer Instruments LLCInventors: Yongdong Wang, David H. Tracy, Paul G. Saviano, Alan M. Ganz, Koichi Nishikida, Gitesh Kumar
-
Patent number: 6418383Abstract: An iterative method and apparatus for correction and compensation of analytical signals, such as spectrometric data, is provided which corrects for spectral cross-talk; compensates for spectral shift; and reduces error propagation. The method and apparatus can be applied to a multicomponent sample analysis using least squares procedure with differentiation while reducing noise propagation.Type: GrantFiled: February 11, 2000Date of Patent: July 9, 2002Assignee: PerkinElmer Instruments LLCInventor: Yongdong Wang
-
Patent number: 6138082Abstract: For conversion of spectral information of an FTIR spectrometric instrument for comparison with that of a dispersion instrument, a first standard function is selected for spectral line shape for the first instrument, and a second standard function for line shape is selected for the second instrument. A conversion factor is computed for converting the first standard function to the second standard function. In ordinary operations, first spectral information is obtained with the first instrument for a first sample, and second spectral information is obtained with the second instrument for a second sample. The conversion factor is applied to the first spectral information to effect converted information, and the converted information is compared with the second spectral information. Such conversion also is applied between chromatographic instruments.Type: GrantFiled: December 18, 1997Date of Patent: October 24, 2000Assignee: The Perkin Elmer CorporationInventors: Yongdong Wang, Alan M. Ganz, David H. Tracy, David A. Huppler, John P. Coates