Patents by Inventor Yonghwa Chris Cha

Yonghwa Chris Cha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8309446
    Abstract: Embodiments of the invention contemplate the formation of a high efficiency solar cell using a novel processing sequence to form a solar cell device. In one embodiment, the methods include forming a doping layer on a back surface of a substrate, heating the doping layer and substrate to cause the doping layer diffuse into the back surface of the substrate, texturing a front surface of the substrate after heating the doping layer and the substrate, forming a dielectric layer on the back surface of the substrate, removing portions of the dielectric layer from the back surface to from a plurality of exposed regions of the substrate, and depositing a metal layer over the back surface of the substrate, wherein the metal layer is in electrical communication with at least one of the plurality of exposed regions on the substrate, and at least one of the exposed regions has dopant atoms provided from the doping layer.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: November 13, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Timothy W. Weidman, Rohit Mishra, Michael P. Stewart, Yonghwa Chris Cha, Kapila P. Wijekoon, Hongbin Fang
  • Patent number: 8207005
    Abstract: Embodiments of the invention contemplate the formation of a high efficiency solar cell using novel methods to form the active doped region(s) and the metal contact structure of the solar cell device. In one embodiment, the methods include the steps of depositing a dielectric material that is used to define the boundaries of the active regions and/or contact structure of a solar cell device. Various techniques may be used to form the active regions of the solar cell and the metal contact structure.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: June 26, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Timothy W. Weidman, Rohit Mishra, Michael P. Stewart, Kapila P. Wijekoon, Yonghwa Chris Cha, Tristan Holtam, Vinay Shah
  • Patent number: 8183081
    Abstract: Embodiments of the invention generally provide a high efficiency solar cell using a novel processing sequence to form a solar cell device. In one embodiment, the methods include forming one or more layers on a backside of a solar cell substrate prior to the texturing process to prevent attack of the backside surface of the substrate. In one embodiment, the one or more layers are a metalized backside contact structure that is formed on the backside of the solar cell substrate. In another embodiment, the one or more layers are a chemical resistant dielectric layer that is formed over the backside of the solar cell substrate.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: May 22, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Timothy W. Weidman, Rohit Mishra, Michael P. Stewart, Yonghwa Chris Cha, Kapila P. Wijekoon, Hongbin Fang
  • Publication number: 20110183458
    Abstract: Embodiments of the invention contemplate the formation of a high efficiency solar cell using novel methods to form the active doped region(s) and the metal contact structure of the solar cell device. In one embodiment, the methods include the steps of depositing a dielectric material that is used to define the boundaries of the active regions and/or contact structure of a solar cell device. Various techniques may be used to form the active regions of the solar cell and the metal contact structure.
    Type: Application
    Filed: March 7, 2011
    Publication date: July 28, 2011
    Inventors: Timothy W. WEIDMAN, Rohit Mishra, Michael P. Stewart, Kapila P. Wijekoon, Yonghwa Chris Cha, Tristan Holtam, Vinay Shah
  • Patent number: 7951637
    Abstract: Embodiments of the invention contemplate the formation of a high efficiency solar cell using novel methods to form the active doped region(s) and the metal contact structure of the solar cell device. In one embodiment, the methods include the steps of depositing a dielectric material that is used to define the boundaries of the active regions and/or contact structure of a solar cell device. Various techniques may be used to form the active regions of the solar cell and the metal contact structure.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: May 31, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Timothy W. Weidman, Rohit Mishra, Michael P. Stewart, Kapila P. Wijekoon, Yonghwa Chris Cha, Tristan Holtam, Vinay Shah
  • Publication number: 20100055822
    Abstract: Embodiments of the invention contemplate the formation of a high efficiency solar cell using novel methods to form the active doped region(s) and the metal contact structure of the solar cell device. In one embodiment, the methods include the steps of depositing a dielectric material that is used to define the boundaries of the active regions and/or contact structure of a solar cell device. Various techniques may be used to form the active regions of the solar cell and the metal contact structure.
    Type: Application
    Filed: August 27, 2009
    Publication date: March 4, 2010
    Inventors: Timothy W. Weidman, Rohit Mishra, Michael P. Stewart, Kapila P. Wijekoon, Yonghwa Chris Cha, Tristan Holtam, Vinay Shah
  • Publication number: 20100015751
    Abstract: Embodiments of the invention contemplate the formation of a high efficiency solar cell using a novel processing sequence to form a solar cell device. In one embodiment, the methods include the use of various etching and patterning processes that are used to define active regions of the device and regions where the device and/or contact structure is to be located on a surface of a solar cell substrate. The method generally includes the steps of forming one or more layers on a backside of a solar cell substrate to prevent attack of the backside surface of the substrate, and provide a stable supporting surface, when the front side regions of a solar cell are formed. In one embodiment, the one or more layers are a metalized backside contact structure that is formed on the backside of the solar cell substrate. In another embodiment, the one or more layers are a chemical resistant dielectric layer that is formed over the backside of the solar cell substrate.
    Type: Application
    Filed: July 16, 2009
    Publication date: January 21, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Timothy W. Weidman, Rohit Mishra, Michael P. Stewart, Yonghwa Chris Cha, Kapila P. Wijekoon, Hongbin Fang
  • Publication number: 20100015756
    Abstract: Embodiments of the invention contemplate the formation of a high efficiency solar cell using a novel processing sequence to form a solar cell device. In one embodiment, the methods include forming a doping layer on a back surface of a substrate, heating the doping layer and substrate to cause the doping layer diffuse into the back surface of the substrate, texturing a front surface of the substrate after heating the doping layer and the substrate, forming a dielectric layer on the back surface of the substrate, removing portions of the dielectric layer from the back surface to from a plurality of exposed regions of the substrate, and depositing a metal layer over the back surface of the substrate, wherein the metal layer is in electrical communication with at least one of the plurality of exposed regions on the substrate, and at least one of the exposed regions has dopant atoms provided from the doping layer.
    Type: Application
    Filed: July 16, 2009
    Publication date: January 21, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Timothy W. Weidman, Rohit Mishra, Michael P. Stewart, Yonghwa Chris Cha, Kapila P. Wijekoon, Hongbin Fang
  • Patent number: 7611990
    Abstract: Embodiments as described herein provide a method for depositing barrier layers and tungsten materials on substrates. In one embodiment, a method for depositing materials is provided which includes forming a barrier layer on a substrate, wherein the barrier layer contains a cobalt silicide layer and a metallic cobalt layer, exposing the barrier layer to a soak gas containing a reducing gas during a soak process, and forming a tungsten material over the barrier layer. In one example, the barrier layer may be formed by depositing a cobalt-containing material on a dielectric surface of the substrate and annealing the substrate to form the cobalt silicide layer from a lower portion of the cobalt-containing material and the metallic cobalt layer from an upper portion of the cobalt-containing material.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: November 3, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Ki Hwan Yoon, Yonghwa Chris Cha, Sang Ho Yu, Hafiz Farooq Ahmad, Ho Sun Wee
  • Publication number: 20080268636
    Abstract: Embodiments as described herein provide a method for depositing barrier layers and tungsten materials on substrates. In one embodiment, a method for depositing materials is provided which includes forming a barrier layer on a substrate, wherein the barrier layer contains a cobalt silicide layer and a metallic cobalt layer, exposing the barrier layer to a soak gas containing a reducing gas during a soak process, and forming a tungsten material over the barrier layer. In one example, the barrier layer may be formed by depositing a cobalt-containing material on a dielectric surface of the substrate and annealing the substrate to form the cobalt silicide layer from a lower portion of the cobalt-containing material and the metallic cobalt layer from an upper portion of the cobalt-containing material.
    Type: Application
    Filed: July 10, 2008
    Publication date: October 30, 2008
    Inventors: Ki Hwan Yoon, Yonghwa Chris Cha, Sang Ho Yu, Hafiz Farooq Ahmad, Ho Sun Wee
  • Patent number: 7416979
    Abstract: Embodiments are provided for a method to deposit barrier and tungsten materials on a substrate. In one embodiment, a method provides forming a barrier layer on a substrate and exposing the substrate to a silane gas to form a thin silicon-containing layer on the barrier layer during a soak process. The method further provides depositing a tungsten nucleation layer over the barrier layer and the thin silicon-containing layer during an atomic layer deposition process and depositing a tungsten bulk layer on the tungsten nucleation layer during a chemical vapor deposition process. In some examples, the barrier layer contains metallic cobalt and cobalt silicide, or metallic nickel and nickel silicide. In other examples, the barrier layer contains metallic titanium and titanium nitride, or metallic tantalum and tantalum nitride.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: August 26, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Ki Hwan Yoon, Yonghwa Chris Cha, Sang Ho Yu, Hafiz Farooq Ahmad, Ho Sun Wee
  • Publication number: 20040211665
    Abstract: Methods and apparatus are provided for forming a metal or metal silicide barrier layer. In one aspect, a method is provided for processing a substrate including positioning a substrate having a silicon material disposed thereon in a substrate processing system, depositing a first metal layer on the substrate surface in a first processing chamber, forming a metal silicide layer by reacting the silicon material and the first metal layer, and depositing a second metal layer in situ on the substrate in a second processing chamber. In another aspect, the method is performed in an apparatus including a load lock chamber, the intermediate substrate transfer region including a first substrate transfer chamber and a second substrate transfer chamber, a physical vapor deposition processing chamber coupled to the first substrate transfer chamber, and a chemical vapor deposition chamber coupled to the second substrate transfer chamber.
    Type: Application
    Filed: May 14, 2004
    Publication date: October 28, 2004
    Inventors: Ki Hwan Yoon, Yonghwa Chris Cha, Sang Ho Yu, Hafiz Farooq Ahmad, Ho Sun Wee
  • Patent number: 6740585
    Abstract: Methods and apparatus are provided for forming a metal or metal silicide barrier layer. In one aspect, a method is provided for processing a substrate including positioning a substrate having a silicon material disposed thereon in a substrate processing system, depositing a first metal layer on the substrate surface in a first processing chamber, forming a metal silicide layer by reacting the silicon material and the first metal layer, and depositing a second metal layer in situ on the substrate in a second processing chamber. In another aspect, the method is performed in an apparatus including a load lock chamber, the intermediate substrate transfer region including a first substrate transfer chamber and a second substrate transfer chamber, a physical vapor deposition processing chamber coupled to the first substrate transfer chamber, and a chemical vapor deposition chamber coupled to the second substrate transfer chamber.
    Type: Grant
    Filed: January 9, 2002
    Date of Patent: May 25, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Ki Hwan Yoon, Yonghwa Chris Cha, Sang Ho Yu, Hafiz Farooq Ahmad, Ho Sun Wee
  • Patent number: 6660135
    Abstract: A semiconductor metallization process for providing complete via fill on a substrate, free of voids, and a planar metal surface, free of grooves. In one aspect, a refractory layer is deposited onto a substrate having high aspect ratio contacts or vias formed thereon. A conformal PVD metal layer, such as Al or Cu, is then deposited onto the refractory layer at a pressure below about 1 milliTorr. The vias and/or contacts are then filled with metal, such as by reflowing additional metal deposited by physical vapor deposition on the conformal PVD metal layer. The process is preferably performed in an integrated processing system that includes a long throw PVD chamber, wherein a target and a substrate are separated by at least 100 mm, and a hot metal PVD chamber, also serving as a reflow chamber.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: December 9, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Sang-Ho Yu, Yonghwa Chris Cha, Murali Abburi, Shri Singhvi, Fufa Chen
  • Publication number: 20030029715
    Abstract: Methods and apparatus are provided for annealing of materials deposited in a processing chamber to form silicide layers. In one aspect, a method is provided for treating a substrate surface including positioning a substrate having silicon material disposed thereon on a substrate support in a chamber, forming a metal layer on at least the silicon material, and annealing the substrate in situ to form a metal silicide layer. In another aspect, the method is performed in an apparatus including a load lock chamber, an intermediate substrate transfer region connected to the load lock chamber, the intermediate substrate transfer region comprising a first substrate transfer chamber and a second substrate transfer chamber, a physical vapor deposition processing chamber disposed on the first substrate transfer chamber and an annealing chamber disposed on the second substrate transfer chamber.
    Type: Application
    Filed: July 25, 2001
    Publication date: February 13, 2003
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Sang-Ho Yu, Yonghwa Chris Cha, Ki Hwan Yoon
  • Publication number: 20030022487
    Abstract: Methods and apparatus are provided for forming a metal or metal silicide barrier layer. In one aspect, a method is provided for processing a substrate including positioning a substrate having a silicon material disposed thereon in a substrate processing system, depositing a first metal layer on the substrate surface in a first processing chamber, forming a metal silicide layer by reacting the silicon material and the first metal layer, and depositing a second metal layer in situ on the substrate in a second processing chamber. In another aspect, the method is performed in an apparatus including a load lock chamber, the intermediate substrate transfer region including a first substrate transfer chamber and a second substrate transfer chamber, a physical vapor deposition processing chamber coupled to the first substrate transfer chamber, and a chemical vapor deposition chamber coupled to the second substrate transfer chamber.
    Type: Application
    Filed: January 9, 2002
    Publication date: January 30, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Ki Hwan Yoon, Yonghwa Chris Cha, Sang Ho Yu, Hafiz Farooq Ahmad, Ho Sun Wee
  • Publication number: 20030015421
    Abstract: A magnetron sputter reactor particularly useful for sputtering a magnetic material such as cobalt into high aspect-ratio holes of a wafer. A magnetron is positioned in back of the target which is spaced from the pedestal supporting the wafer by at least 50% of the wafer diameter in a long-throw configuration. A grounded collimator is additionally placed between the target and wafer, preferably relatively close to the target to mostly confine plasma near the target. A grounded shield protects the sides and bottom of the chamber and the pedestal sides from sputter deposition, and it supports the collimator on a ledge in its middle.
    Type: Application
    Filed: July 20, 2001
    Publication date: January 23, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Yonghwa Chris Cha, Ki Hwan Yoon, Jin-Hyun Kim, Sang Ho Yu
  • Publication number: 20020064952
    Abstract: The present invention is a semiconductor metallization process for providing complete via fill on a substrate and a planar metal surface, wherein the vias are free of voids and the metal surface is free of grooves. In one aspect of the invention, a refractory layer is deposited onto a substrate having high aspect ratio contacts or vias formed thereon. A PVD metal layer, such as PVD Al or PVD Cu, is then deposited onto the refractory layer at a pressure below about 1 milliTorr to provide a conformal PVD metal layer. Then the vias or contacts are filled with metal, such as by reflowing additional metal deposited by physical vapor deposition on the conformal PVD metal layer. The process is preferably carried out in an integrated processing system that includes a long throw PVD chamber, wherein a target and a substrate are separated by a long throw distance of at least 100 mm, and a hot metal PVD chamber that also serves as a reflow chamber.
    Type: Application
    Filed: December 21, 2001
    Publication date: May 30, 2002
    Inventors: Sang-Ho Yu, Yonghwa Chris Cha, Murali Abburi, Shri Singhvi, Fufa Chen
  • Patent number: 6352620
    Abstract: The present invention is a semiconductor metallization process for providing complete via fill on a substrate and a planar metal surface, wherein the vias are free of voids and the metal surface is free of grooves. In one aspect of the invention, a refractory layer is deposited onto a substrate having high aspect ratio contacts or vias formed thereon. A PVD metal layer, such as PVD Al or PVD Cu, is then deposited onto the refractory layer at a pressure below about 1 milliTorr to provide a conformal PVD metal layer. Then the vias or contacts are filled with metal, such as by reflowing additional metal deposited by physical vapor deposition on the conformal PVD metal layer. The process is preferably carried out in an integrated processing system that includes a long throw PVD chamber, wherein a target and a substrate are separated by a long throw distance of at least 100 mm, and a hot metal PVD chamber that also serves as a reflow chamber.
    Type: Grant
    Filed: June 28, 1999
    Date of Patent: March 5, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Sang-Ho Yu, Yonghwa Chris Cha, Murali Abburi, Shri Singhvi, Fufa Chen
  • Publication number: 20010047932
    Abstract: The present invention is a semiconductor metallization process for providing complete via fill on a substrate and a planar metal surface, wherein the vias are free of voids and the metal surface is free of grooves. In one aspect of the invention, a refractory layer is deposited onto a substrate having high aspect ratio contacts or vias formed thereon. A PVD metal layer, such as PVD Al or PVD Cu, is then deposited onto the refractory layer at a pressure below about 1 milliTorr to provide a conformal PVD metal layer. Then the vias or contacts are filled with metal, such as by reflowing additional metal deposited by physical vapor deposition on the conformal PVD metal layer. The process is preferably carried out in an integrated processing system that includes a long throw PVD chamber, wherein a target and a substrate are separated by a long throw distance of at least 100 mm, and a hot metal PVD chamber that also serves as a reflow chamber.
    Type: Application
    Filed: June 28, 1999
    Publication date: December 6, 2001
    Applicant: Applied Materials, Inc.
    Inventors: SANG-HO YU, YONGHWA CHRIS CHA, MURALI ABBURI, SHRI SINGHVI, FUFA CHEN