Patents by Inventor Yongjia Gao

Yongjia Gao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240084369
    Abstract: A digital microfluidic apparatus and a driving method therefor. The digital microfluidic apparatus comprises a digital microfluidic chip (10), a thermal control apparatus (20), and an elastic support apparatus (30). The digital microfluidic chip (10) is provided with a droplet channel (91), and the droplet channel (91) is configured to allow droplets (90) to move therein; the thermal control apparatus (20) is disposed on one side of the digital microfluidic chip (10), and is configured to generate at least two independent and non-interference hot zones in the droplet channel (91), and control the temperature of each hot zone; and the elastic support apparatus (30) is disposed on the side of the thermal control apparatus (20) away from the digital microfluidic chip (10), and is configured to drive the thermal control apparatus (20) to be pasted on the surface of the digital microfluidic chip (10).
    Type: Application
    Filed: July 21, 2022
    Publication date: March 14, 2024
    Inventors: Qiuxu WEI, Wenliang YAO, Yongjia GAO, Bolin FAN, Yingying ZHAO, Le GU, Li YANG
  • Patent number: 11583855
    Abstract: The present disclosure discloses a microfluidic structure, a microfluidic chip and a detection method. The microfluidic structure includes: a first base substrate and a second base substrate opposite to each other, an antibody area located between the first base substrate and the second base substrate and storing an enzyme-labeled first antibody, a cleaning area storing cleaning liquid, a signal substrate area storing a signal substrate solution and a detection area with a second antibody and an ion sensitive film fixed thereon, wherein all channel areas from the antibody area, the cleaning area and the signal substrate area to the detection area each have a driving electrode structure driving liquid drops to move; and the detection area has a thin film transistor connected with the ion sensitive film.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: February 21, 2023
    Assignees: Beijing BOE Sensor Technology Co., Ltd., BOE Technology Group Co., Ltd.
    Inventors: Hui Liao, Yingying Zhao, Bolin Fan, Wenliang Yao, Nan Zhao, Le Gu, Yongjia Gao
  • Publication number: 20220403306
    Abstract: Disclosed are a substrate for a microfluidic device, a microfluidic device, a driving method of the microfluidic device, and a method of manufacturing a substrate for the microfluidic device. The substrate includes: a first base substrate; a first electrode layer on the first base substrate, the first electrode layer including a plurality of drive electrodes. The plurality of drive electrodes define at least one flow channel and at least one functional area in the first substrate, the at least one functional area includes a reagent area, the at least one flow channel includes a reagent area flow channel, the reagent area includes a reagent area liquid storage portion and a droplet shape changing portion, the droplet shape changing portion is adjacent to the reagent area flow channel, and the reagent liquid storage portion is on a side of the droplet shape changing portion away from the reagent area flow channel.
    Type: Application
    Filed: December 25, 2020
    Publication date: December 22, 2022
    Inventors: Bolin FAN, Le GU, Yingying ZHAO, Wenliang YAO, Yongjia GAO, Qiuxu WEI
  • Publication number: 20220395832
    Abstract: The present disclosure provides a substrate for driving droplets, a manufacturing method thereof, and a microfluidic device. The substrate includes a first base substrate a plurality of leads on the first base substrate a plurality of driving electrodes on a side of the plurality of leads away from the first base substrate and a shielding electrode on the side of the plurality of leads away from the first base substrate and grounded. Each of the plurality of leads is electrically connected to at least one of the plurality of driving electrodes, an orthographic projection of the shielding electrode on the first base substrate and an orthographic projection of at least one of the plurality of leads on the first base substrate at least partially overlap, and the shielding electrode is electrically insulated from the plurality of driving electrodes.
    Type: Application
    Filed: December 25, 2020
    Publication date: December 15, 2022
    Inventors: Bolin FAN, Le GU, Yingying ZHAO, Wenliang YAO, Yongjia GAO, Qiuxu WEI
  • Publication number: 20220395826
    Abstract: The present disclosure relates to a microfluidic substrate, a microfluidic device and a driving method thereof. The microfluidic substrate includes a first area, the first area includes a first module for generating droplets, the first module includes a first electrode pair and a second electrode pair, and the first electrode pair and the second electrode pair are arranged in a crisscross pattern. The first electrode pair includes a first electrode and a second electrode, and the second electrode pair includes a third electrode and a fourth electrode.
    Type: Application
    Filed: December 25, 2020
    Publication date: December 15, 2022
    Inventors: Bolin FAN, Yongjia GAO, Yingying ZHAO, Le GU, Wenliang YAO, Qiuxu WEI
  • Publication number: 20220341925
    Abstract: The present disclosure relates to a digital microfluidic chemiluminescence detection chip, a detection method and a detection device. The digital microfluidic chemiluminescence detection chip includes a first baseplate and a second baseplate disposed oppositely. A cavity formed by the first and second baseplate includes a mixing and incubating area for combining an antigen, a magnetic particle antibody and an antibody, a luminescence detection area for chemiluminescence and detecting an optical signal, and a communication path for communicating the mixing and incubating area and the luminescence detection area. The first baseplate is provided with a drive array for driving sample solution to move and an optical sensing array for acquiring a luminescence signal of the sample solution. The drive array corresponds to positions of the mixing and incubating area, the luminescence detection area and the communication path. The optical sensing array corresponds to a position of the luminescence detection area.
    Type: Application
    Filed: February 7, 2021
    Publication date: October 27, 2022
    Inventors: Yue LI, Wenliang YAO, Nan ZHAO, Yongjia GAO, Bolin FAN, Le GU, Hui LIAO, Yingying ZHAO
  • Publication number: 20220314216
    Abstract: A micro-fluidic chip is provided. The micro-fluidic chip includes: a first base substrate; a first electrode on the first base substrate and electrically coupled to a wire at a driving end; a second electrode on a side of the first electrode away from the first base substrate and spaced apart and electrically insulated from the first electrode, the second electrode including a plurality of sub-blocks of the second electrode, and an orthographic projection of the second electrode on the first base substrate being at least partially overlapped with an orthographic projection of the first electrode on the first base substrate; and voltage-dividing resistors coupled to the plurality of sub-blocks of the second electrode in one-to-one correspondence and electrically coupled to a ground wire.
    Type: Application
    Filed: September 29, 2020
    Publication date: October 6, 2022
    Inventors: Bolin FAN, Yingying ZHAO, Le GU, Wenliang YAO, Hui LIAO, Yongjia GAO, Qiuxu WEI
  • Publication number: 20220314217
    Abstract: The present disclosure provides a microfluidic chip, and belongs to the field of biological detection technology. The microfluidic chip is divided into a middle region and a peripheral region surrounding the middle region; the middle region includes a liquid storage region and a detection region; the microfluidic chip includes a first substrate and a second substrate opposite to each other; the first substrate includes a first base plate and a first electrode layer; the second substrate includes a second base plate and a second electrode layer; wherein a liquid storage tank and a liquid inlet are on a side of the first base plate proximal to the second substrate, the liquid inlet penetrates through a bottom of the liquid storage tank; the liquid storage tank and the liquid inlet are both in the liquid storage region.
    Type: Application
    Filed: January 29, 2021
    Publication date: October 6, 2022
    Inventors: Le GU, Yingying ZHAO, Wenliang YAO, Bolin FAN, Yongjia GAO, Qiuxu WEI
  • Publication number: 20220314223
    Abstract: An embodiment of the present disclosure provides a microfluidic chip, including: a first substrate; wherein the first substrate includes a first base, a first electrode layer on the first base; the first electrode layer includes a plurality of first electrodes at intervals along a first direction, wherein a cross-sectional shape of the first electrode parallel to the first base is a centrosymmetric shape, and the cross-sectional shape includes: a first boundary and a second boundary opposite to each other in the first direction; a shape of the first boundary is a centrosymmetric curve, a distance between two end points of the first boundary in a second direction perpendicular to the first direction is less than a length of the first boundary; the second boundary has a same shape and length as the first boundary, and the first and second boundaries are parallel to each other in the first direction.
    Type: Application
    Filed: September 25, 2020
    Publication date: October 6, 2022
    Inventors: Qiuxu WEI, Yingying ZHAO, Wenliang YAO, Bolin FAN, Le GU, Yongjia GAO
  • Publication number: 20220226816
    Abstract: The disclosure provides a micro-fluidic chip, and belongs to the field of chip technology. The microfluidic chip provided in the present disclosure includes a plurality of microfluidic units, each microfluidic unit includes an operation region and a transition region located on at least one side of the operation region, the transition regions at adjacent side of two adjacent microfluidic units are disposed opposite to each other. Each microfluidic unit includes: a first substrate; a first electrode layer disposed on the first substrate, the first electrode layer including a plurality of first sub-electrodes located in the operation region and at least one second sub-electrode located in the transition region, and the at least one second sub-electrode configured to drive a droplet to move from one of the plurality of microfluidic units to an adjacent microfluidic unit.
    Type: Application
    Filed: September 30, 2021
    Publication date: July 21, 2022
    Inventors: Qiuxu WEI, Wenliang YAO, Yingying ZHAO, Le GU, Bolin FAN, Yongjia GAO
  • Publication number: 20220193669
    Abstract: Provided are a temperature control system, a detection system and a temperature control method for a micro-fluidic chip. The temperature control system includes a circuit structure in a functional layer of the micro-fluidic chip, corresponding to a reaction zone of the micro-fluidic chip, and including at least two thermistors and an input port and an output port, wherein the input port and the output port are electrically coupled through the thermistors to form an application circuit; and a controller electrically coupled to each port and configured to select a first input port and a first output port, such that the circuit structure is configured to form a first application circuit as a heating device, and to select a second input port and a second output port, such that the circuit structure is configured to form a second application circuit as a temperature sensor.
    Type: Application
    Filed: February 26, 2021
    Publication date: June 23, 2022
    Inventors: Yongjia GAO, Yingying ZHAO, Hui LIAO, Wenliang YAO, Le GU, Bolin FAN, Yue LI
  • Publication number: 20220126287
    Abstract: Provided is a micro-fluidic chip, including a first substrate and a second substrate opposite to each other. A liquid storage cavity is formed between the first substrate and the second substrate, and a liquid inlet hole penetrating through the first substrate in a thickness direction is formed in the first substrate. The first substrate includes a first electrode layer and a hydrophobic layer that are sequentially disposed in the thickness direction of the first substrate, and the first electrode layer is on a surface of the hydrophobic layer away from the second substrate. The second substrate includes an adjustment layer and a second electrode layer that are sequentially disposed in a thickness direction of the second substrate, and the second electrode layer is on a surface of the adjustment layer away from the first substrate. A micro-fluidic system and a control method of the micro-fluidic chip are also provided.
    Type: Application
    Filed: May 13, 2020
    Publication date: April 28, 2022
    Inventors: Yue LI, Wenliang YAO, Nan ZHAO, Yongjia GAO, Le GU, Hui LIAO, Bolin FAN, Yingying ZHAO
  • Publication number: 20210268499
    Abstract: The present disclosure discloses a microfluidic structure, a microfluidic chip and a detection method. The microfluidic structure includes: a first base substrate and a second base substrate opposite to each other, an antibody area located between the first base substrate and the second base substrate and storing an enzyme-labeled first antibody, a cleaning area storing cleaning liquid, a signal substrate area storing a signal substrate solution and a detection area with a second antibody and an ion sensitive film fixed thereon, wherein all channel areas from the antibody area, the cleaning area and the signal substrate area to the detection area each have a driving electrode structure driving liquid drops to move; and the detection area has a thin film transistor connected with the ion sensitive film.
    Type: Application
    Filed: February 26, 2021
    Publication date: September 2, 2021
    Inventors: Hui LIAO, Yingying ZHAO, Bolin FAN, Wenliang YAO, Nan ZHAO, Le GU, Yongjia GAO
  • Publication number: 20210187507
    Abstract: The present disclosure discloses a sample preliminary screening chip, a specimen detecting method and a screening device. A data processor may be configured to control a sample solution containing a specimen to be added into a preliminary screening inlet of the sample preliminary screening chip, and control the sample solution in the preliminary screening inlet to enter a channel, successively to flow through a first preliminary screening area and a second preliminary screening area, and to flow out from a preliminary screening outlet so as to store a liquid with the specimen in a first preliminary screening area. In this way, the liquid containing the specimen may be screened preliminarily.
    Type: Application
    Filed: June 11, 2020
    Publication date: June 24, 2021
    Inventors: Hui Liao, Yingying Zhao, Wenliang Yao, Bolin Fan, Nan Zhao, Le Gu, Yongjia Gao