Patents by Inventor Yongjun CUI
Yongjun CUI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11492563Abstract: Provided is a conversion process for an inferior oil, relating to the field of biomass utilization, energy and chemical industry. The conversion process is carried out in presence of a catalyst selected from the group consisting of an iron oxide compound, a desulfurization waste agent resulting from use of an iron oxide compound as desulfurizer, and a regeneration product of the desulfurization waste agent, under a controlled molar ratio of iron element to sulfur element. It is found that free radical condensation polymerization of inferior oil during cracking process can be blocked effectively by using carbonylation, and hydrogenation is achieved with active hydrogen produced from the conversion of CO and water. In the conversion process, inferior oil can be, directly converted, thereby increasing liquefaction yield and calorific value of the obtained oils. No large amount of waste water is generated after completion of the conversion.Type: GrantFiled: May 30, 2019Date of Patent: November 8, 2022Inventors: Ke Lin, Lixin Guo, Yongjun Cui
-
Patent number: 11198820Abstract: Provided is a conversion process for an organic oil, relating to the field of biomass utilization, energy and chemical industry. The conversion process is carried out in presence of an aqueous slurry and a catalyst selected from the group consisting of an iron oxide compound, a waste agent resulting from use of an iron oxide compound as desulfurizer, and a regeneration product of the waste agent, under a controlled molar ratio of iron element to sulfur element. It is found that free radical condensation polymerization of organic oil during cracking process can be blocked effectively by using carbonylation, and hydrogenation is achieved with active hydrogen produced from the conversion of CO and water. In the conversion process, organic material, especially biomass solid, can be directly converted without dehydration, and water can be additionally added to the biomass liquid or the mineral oil.Type: GrantFiled: May 30, 2019Date of Patent: December 14, 2021Inventors: Ke Lin, Lixin Guo, Yongjun Cui, Shengfeng Li, Dongmei Cui
-
Patent number: 10703978Abstract: The present invention provides a composition for biomass oil, and a preparation method and use thereof. The composition comprises a biomass and a liquid oil, wherein, based on weight of the biomass, the biomass has a moisture content of 3 wt % to 18 wt %. The biomass is mixed with the liquid oil to obtain a liquid mixture, i.e., the composition for biomass oil. According to the use of the composition for biomass oil in preparation of biomass oil, high-pressure high-temperature hydrolysis is carried out by using water in the biomass, and the polycondensation of coke is avoided under the co-action of hydrogen gas and a catalyst, so that the yield of the coke is lowered, and the yield of the biomass oil is increased.Type: GrantFiled: October 27, 2017Date of Patent: July 7, 2020Assignee: Beijing Huashi United Energy Technology and Development Co., Ltd.Inventors: Ke Lin, Lin Li, Lixin Guo, Yongjun Cui, Lilong Jiang
-
Publication number: 20190330547Abstract: Provided is a conversion process for an inferior oil, relating to the field of biomass utilization, energy and chemical industry. The conversion process is carried out in presence of a catalyst selected from the group consisting of an iron oxide compound, a desulfurization waste agent resulting from use of an iron oxide compound as desulfurizer, and a regeneration product of the desulfurization waste agent, under a controlled molar ratio of iron element to sulfur element. It is found that free radical condensation polymerization of inferior oil during cracking process can be blocked effectively by using carbonylation, and hydrogenation is achieved with active hydrogen produced from the conversion of CO and water. In the conversion process, inferior oil can be, directly converted, thereby increasing liquefaction yield and calorific value of the obtained oils. No large amount of waste water is generated after completion of the conversion.Type: ApplicationFiled: May 30, 2019Publication date: October 31, 2019Inventors: Ke LIN, Lixin GUO, Yongjun CUI
-
Publication number: 20190330536Abstract: Provided is a conversion process for an organic oil, relating to the field of biomass utilization, energy and chemical industry. The conversion process is carried out in presence of an aqueous slurry and a catalyst selected from the group consisting of an iron oxide compound, a waste agent resulting from use of an iron oxide compound as desulfurizer, and a regeneration product of the waste agent, under a controlled molar ratio of iron element to sulfur element. It is found that free radical condensation polymerization of organic oil during cracking process can be blocked effectively by using carbonylation, and hydrogenation is achieved with active hydrogen produced from the conversion of CO and water. In the conversion process, organic material, especially biomass solid, can be directly converted without dehydration, and water can be additionally added to the biomass liquid or the mineral oil.Type: ApplicationFiled: May 30, 2019Publication date: October 31, 2019Inventors: Ke LIN, Lixin GUO, Yongjun CUI, Shengfeng LI, Dongmei CUI
-
Patent number: 10287506Abstract: The present invention relates to the field of biological energy, in particular to a biomass liquefaction process and fuel oil and chemical raw materials prepared by the same. The biomass liquefaction process comprises the following steps: preparing a slurry comprising a first catalyst and a biomass; performing a first hydrogenation reaction by introducing hydrogen to the slurry to obtain a first stage hydrogenation product; performing a second hydrogenation reaction by adding a second catalyst and introducing hydrogen into the first stage hydrogenation product to obtain a second stage hydrogenation product; and subjecting the second stage hydrogenation product to separation operation to obtain a fuel oil and chemical raw material; wherein the first hydrogenation reaction is controlled to have a reaction pressure of 13-25 MPa and a reaction temperature of 200-350° C., and the second hydrogenation reaction is controlled to have a reaction pressure of 13-25 MPa and a reaction temperature of 380-480° C.Type: GrantFiled: November 20, 2017Date of Patent: May 14, 2019Assignee: BEIJING HUASHI UNITED ENERGY TECHNOLOGY AND DEVELOPMENT CO., LTDInventors: Ke Lin, Lin Li, Lixin Guo, Yongjun Cui, Lilong Jiang
-
Patent number: 10280370Abstract: A one-pot liquefaction process for biomass is presented. The one-pot liquefaction process for biomass comprises the following steps: preparing a slurry containing a catalyst, a vulcanizing agent and a biomass, and introducing hydrogen into the slurry to carry out a reaction, thereby obtaining a bio-oil wherein the reaction is controlled to be carried out under a pressure of 13-25 MPa and a temperature of 300-500° C.; and the catalyst comprises amorphous alumina or biomass charcoal loading an active component, and the active component comprises one or more selected from oxides of metals of group VIB, group VIIB or group VIII in the periodic table of elements. The process provided by the present invention has high reaction efficiency, no coke formation and high liquid yield.Type: GrantFiled: October 27, 2017Date of Patent: May 7, 2019Assignee: Beijing Huashi United Energy Technology and Development Co., LtdInventors: Ke Lin, Lin Li, Lixin Guo, Yongjun Cui, Lilong Jiang
-
Patent number: 10260004Abstract: The present invention discloses a method for direct liquefaction of biomass. The method comprises the following steps: (1) mixing a biomass, a hydrogenation catalyst and a hydrogen-donor solvent to prepare a biomass slurry; (2) carrying out a first liquefaction reaction with the biomass slurry and hydrogen gas to obtain a first reaction product; (3) carrying out a second liquefaction reaction with the first reaction product and hydrogen gas to obtain a second reaction product; (4) subjecting the second reaction product to a first gas-liquid separation at a temperature of 290-460 DEG C. to produce a first liquid phase and a first gas phase; (5) subjecting the first gas phase to a second gas-liquid separation at a temperature of 30-60 DEG C.Type: GrantFiled: November 20, 2017Date of Patent: April 16, 2019Assignee: Beijing Huashi United Energy Technology and Development Co., Ltd.Inventors: Ke Lin, Lin Li, Lixin Guo, Yongjun Cui, Lilong Jiang
-
Patent number: 10208255Abstract: The present invention discloses a method for producing light oil through liquefying biomass. The method comprises the following steps: (1) mixing a biomass, a hydrogenation catalyst and a solvent oil to prepare a biomass slurry; (2) carrying out a first liquefaction reaction with the biomass slurry and hydrogen gas to obtain a first reaction product; (3) carrying out a second liquefaction reaction with the first reaction product and hydrogen gas to obtain a second reaction product; (4) subjecting the second reaction product to a first separation operation to produce a light component and a heavy component; (5) carrying out vacuum distillation on the heavy component to obtain a light fraction; (6) mixing the light component with the light fraction to form a mixture, carrying out a hydrogenation reaction on the mixture to obtain a hydrogenation product; and (7) subjecting the hydrogenation product to fractionation operation to obtain a light oil.Type: GrantFiled: November 20, 2017Date of Patent: February 19, 2019Assignee: Beijin Huashi United Energy Technology and DevelopmentInventors: Ke Lin, Lin Li, Lixin Guo, Yongjun Cui, Lilong Jiang
-
Publication number: 20180142160Abstract: The present invention discloses a one-pot liquefaction process for biomass. The one-pot liquefaction process for biomass comprises the following steps: preparing a slurry containing a catalyst, a vulcanizing agent and a biomass, and introducing hydrogen into the slurry to carry out a reaction, thereby obtaining a bio-oil wherein the reaction is controlled to be carried out under a pressure of 13-25 MPa and a temperature of 300-500 DEG C.; and the catalyst comprises amorphous alumina or biomass charcoal loading an active component, and the active component comprises one or more selected from oxides of metals of group VIB, group VIIB or group VIII in the periodic table of elements. The process provided by the present invention has high reaction efficiency, no coke formation and high liquid yield.Type: ApplicationFiled: October 27, 2017Publication date: May 24, 2018Inventors: Ke LIN, Lin LI, Lixin GUO, Yongjun CUI, Lilong JIANG
-
Publication number: 20180142163Abstract: The present invention relates to the field of biological energy, in particular to a biomass liquefaction process and fuel oil and chemical raw materials prepared by the same. The biomass liquefaction process comprises the following steps: preparing a slurry comprising a first catalyst and a biomass; performing a first hydrogenation reaction by introducing hydrogen to the slurry to obtain a first stage hydrogenation product; performing a second hydrogenation reaction by adding a second catalyst and introducing hydrogen into the first stage hydrogenation product to obtain a second stage hydrogenation product; and subjecting the second stage hydrogenation product to separation operation to obtain a fuel oil and chemical raw material; wherein the first hydrogenation reaction is controlled to have a reaction pressure of 13-25 MPa and a reaction temperature of 200-350° C., and the second hydrogenation reaction is controlled to have a reaction pressure of 13-25 MPa and a reaction temperature of 380-480° C.Type: ApplicationFiled: November 20, 2017Publication date: May 24, 2018Inventors: Ke Lin, Lin Li, Lixin Guo, Yongjun Cui, Lilong Jiang
-
Publication number: 20180142162Abstract: The present invention discloses a method for direct liquefaction of biomass. The method comprises the following steps: (1) mixing a biomass, a hydrogenation catalyst and a hydrogen-donor solvent to prepare a biomass slurry; (2) carrying out a first liquefaction reaction with the biomass slurry and hydrogen gas to obtain a first reaction product; (3) carrying out a second liquefaction reaction with the first reaction product and hydrogen gas to obtain a second reaction product; (4) subjecting the second reaction product to a first gas-liquid separation at a temperature of 290-460 DEG C. to produce a first liquid phase and a first gas phase; (5) subjecting the first gas phase to a second gas-liquid separation at a temperature of 30-60 DEG C.Type: ApplicationFiled: November 20, 2017Publication date: May 24, 2018Inventors: Ke LIN, Lin LI, Lixin GUO, Yongjun CUI, Lilong JIANG
-
Publication number: 20180142161Abstract: The present invention discloses a method for producing light oil through liquefying biomass. The method comprises the following steps: (1) mixing a biomass, a hydrogenation catalyst and a solvent oil to prepare a biomass slurry; (2) carrying out a first liquefaction reaction with the biomass slurry and hydrogen gas to obtain a first reaction product; (3) carrying out a second liquefaction reaction with the first reaction product and hydrogen gas to obtain a second reaction product; (4) subjecting the second reaction product to a first separation operation to produce a light component and a heavy component; (5) carrying out vacuum distillation on the heavy component to obtain a light fraction; (6) mixing the light component with the light fraction to form a mixture, carrying out a hydrogenation reaction on the mixture to obtain a hydrogenation product; and (7) subjecting the hydrogenation product to fractionation operation to obtain a light oil.Type: ApplicationFiled: November 20, 2017Publication date: May 24, 2018Inventors: Ke Lin, Lin Li, Lixin Guo, Yongjun Cui, Lilong Jiang
-
Publication number: 20180142157Abstract: The present invention discloses a one-pot liquefaction process for biomass. The one-pot liquefaction process for biomass comprises the following steps: preparing a slurry containing a catalyst, a vulcanizing agent and a biomass, and introducing hydrogen into the slurry to carry out a reaction, thereby obtaining a bio-oil wherein the reaction is controlled to be carried out under a pressure of 13-25 MPa and a temperature of 300-500 DEG C.; and the catalyst comprises amorphous alumina or biomass charcoal loading an active component, and the active component comprises one or more selected from oxides of metals of group VIB, group VIIB or group VIII in the periodic table of elements. The process provided by the present invention has high reaction efficiency, no coke formation and high liquid yield.Type: ApplicationFiled: October 27, 2017Publication date: May 24, 2018Inventors: Ke LIN, Lin LI, Lixin GUO, Yongjun CUI, Lilong JIANG