Patents by Inventor Yong Soon Baek

Yong Soon Baek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10268004
    Abstract: Provided herein are a multi-channel receiver optical sub-assembly and a manufacturing method thereof. The multi-channel receiver optical sub-assembly includes a PLC chip having a first side into which an optical signal is received and a second side from which the received signal is outputted, with an inclined surface formed on the second side of the PLC chip at a preset angle, a PD carrier bonded onto the PLC chip and made of a glass material, and an SI-PD bonded onto the PD carrier, a lens being integrated therein. The PLC chip, the PD carrier, and the SI-PD are passively aligned by at least one alignment mark and then are bonded.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: April 23, 2019
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Young Tak Han, Sang Ho Park, Yong Soon Baek, Jang Uk Shin, Yong Hwan Kwon, Jong Hoi Kim
  • Publication number: 20180136419
    Abstract: Provided herein are a multi-channel receiver optical sub-assembly and a manufacturing method thereof. The multi-channel receiver optical sub-assembly includes a PLC chip having a first side into which an optical signal is received and a second side from which the received signal is outputted, with an inclined surface formed on the second side of the PLC chip at a preset angle, a PD carrier bonded onto the PLC chip and made of a glass material, and an SI-PD bonded onto the PD carrier, a lens being integrated therein. The PLC chip, the PD carrier, and the SI-PD are passively aligned by at least one alignment mark and then are bonded.
    Type: Application
    Filed: January 12, 2018
    Publication date: May 17, 2018
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Young Tak HAN, Sang Ho PARK, Yong Soon BAEK, Jang Uk SHIN, Yong Hwan KWON, Jong Hoi KIM
  • Patent number: 9904023
    Abstract: Provided herein are a multi-channel receiver optical sub-assembly and a manufacturing method thereof. The multi-channel receiver optical sub-assembly includes a PLC chip having a first side into which an optical signal is received and a second side from which the received signal is outputted, with an inclined surface formed on the second side of the PLC chip at a preset angle, a PD carrier bonded onto the PLC chip and made of a glass material, and an SI-PD bonded onto the PD carrier, a lens being integrated therein. The PLC chip, the PD carrier, and the SI-PD are passively aligned by at least one alignment mark and then are bonded.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: February 27, 2018
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Young Tak Han, Sang Ho Park, Yong Soon Baek, Jang Uk Shin, Yong Hwan Kwon, Jong Hoi Kim
  • Patent number: 9711939
    Abstract: Provided herein is a semiconductor optical device, including a waveguide including lattices buried therein and having a buried hetero (BH) structure formed in an optical oscillation region in which single mode light is oscillated, a waveguide having a deep ridge structure formed in an optical modulation region, and a passive waveguide formed in a mode transition region interposed between the optical oscillation region and the optical modulation region, formed as a connecting structure of the waveguide having the BH structure extending from the optical oscillation region and the waveguide having the deep ridge structure extending from the optical modulation region, and inducing evanescent optical coupling, wherein a width of the waveguide having the BH structure in the mode transition region is smaller than a width of the waveguide having the deep ridge structure in the optical modulation region.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: July 18, 2017
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Dong Hun Lee, Sang Ho Park, Yong Soon Baek, Jang Uk Shin, Young Tak Han
  • Publication number: 20170179679
    Abstract: Provided herein is a semiconductor optical device, including a waveguide including lattices buried therein and having a buried hetero (BH) structure formed in an optical oscillation region in which single mode light is oscillated, a waveguide having a deep ridge structure formed in an optical modulation region, and a passive waveguide formed in a mode transition region interposed between the optical oscillation region and the optical modulation region, formed as a connecting structure of the waveguide having the BH structure extending from the optical oscillation region and the waveguide having the deep ridge structure extending from the optical modulation region, and inducing evanescent optical coupling, wherein a width of the waveguide having the BH structure in the mode transition region is smaller than a width of the waveguide having the deep ridge structure in the optical modulation region.
    Type: Application
    Filed: August 19, 2016
    Publication date: June 22, 2017
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Dong Hun LEE, Sang Ho PARK, Yong Soon BAEK, Jang Uk SHIN, Young Tak HAN
  • Publication number: 20170139162
    Abstract: Provided herein are a multi-channel receiver optical sub-assembly and a manufacturing method thereof. The multi-channel receiver optical sub-assembly includes a PLC chip having a first side into which an optical signal is received and a second side from which the received signal is outputted, with an inclined surface formed on the second side of the PLC chip at a preset angle, a PD carrier bonded onto the PLC chip and made of a glass material, and an SI-PD bonded onto the PD carrier, a lens being integrated therein. The PLC chip, the PD carrier, and the SI-PD are passively aligned by at least one alignment mark and then are bonded.
    Type: Application
    Filed: July 6, 2016
    Publication date: May 18, 2017
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Young Tak HAN, Sang Ho PARK, Yong Soon BAEK, Jang Uk SHIN, Yong Hwan KWON, Jong Hoi KIM
  • Patent number: 9411097
    Abstract: Provided herein is an optical module including an optical bench having a first step with a first depth and a second step with a second depth that is smaller than the first depth; a silicon carrier disposed above the first step, and where at least one semiconductor chip is installed; an AWG chip (Arrayed Waveguide Grating chip) secured to the second step, extends up to the first step, and is chip-to-chip bonded with the silicon carrier above the first step; a lens disposed on an upper surface of the optical bench where the first step and the second step are not formed; and a metal package surrounding the optical bench, silicon carrier, AWG chip and lens, wherein at one side of the metal package, a double slit that includes an upper slit and a lower slit are formed, a DC FPCB (Direct Current FPCB) extends from outside towards inside the metal package through the upper slit and is secured to a support formed on an inner surface of the upper slit, and an RF FPCB (Radio Frequency FPCB) extends from outside towards
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: August 9, 2016
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Young Tak Han, Sang Ho Park, Yong Soon Baek, Jang Uk Shin
  • Publication number: 20160154177
    Abstract: Provided herein is an optical module including an optical bench having a first step with a first depth and a second step with a second depth that is smaller than the first depth; a silicon carrier disposed above the first step, and where at least one semiconductor chip is installed; an AWG chip (Arrayed Waveguide Grating chip) secured to the second step, extends up to the first step, and is chip-to-chip bonded with the silicon carrier above the first step; a lens disposed on an upper surface of the optical bench where the first step and the second step are not formed; and a metal package surrounding the optical bench, silicon carrier, AWG chip and lens, wherein at one side of the metal package, a double slit that includes an upper slit and a lower slit are formed, a DC FPCB (Direct Current FPCB) extends from outside towards inside the metal package through the upper slit and is secured to a support formed on an inner surface of the upper slit, and an RF FPCB (Radio Frequency FPCB) extends from outside towards
    Type: Application
    Filed: June 1, 2015
    Publication date: June 2, 2016
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Young Tak HAN, Sang Ho PARK, Yong Soon BAEK, Jang Uk SHIN
  • Patent number: 8086105
    Abstract: Provided is a wavelength division multiplexer/demultiplexer having a flat wavelength response. In the wavelength division multiplexer/demultiplexer, a modified taper-shaped optical waveguide is interposed between an input waveguide and a first slab waveguide, such that the distribution of an optical signal input to an Arrayed Waveguide Grating (AWG) has a sinc-function shape. Thus, a flat wavelength response can be obtained in an output waveguide. In addition, the modified taper-shaped optical waveguide interposed to obtain a flat wavelength response has a small size and a simple structure, and thus can be applied to a conventional wavelength division multiplexer/demultiplexer without a design change.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: December 27, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jang Uk Shin, Sang Ho Park, Young Tak Han, Sang Pil Han, Yong Soon Baek
  • Patent number: 7974539
    Abstract: Provided is a bi-directional optical module including: a transmission optical element including an SOA (semiconductor optical amplifier) aligned on an optical axis of an LD (laser diode) formed on a substrate; and a reception optical element comprising a PD (photodiode) including a light receiving surface perpendicular to the optical axis of the LD of the transmission optical element.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: July 5, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jung Ho Song, Yong Soon Baek, Sung Il Kim, Ki Soo Kim
  • Publication number: 20100158056
    Abstract: Provided is a semiconductor laser device including: a gain area where multi-wavelength lights are generated and gain are provided; a first reflection area where among the multi-wavelength lights, a first-wavelength light is reflected to the gain area in response to a first selection signal; a second reflection area where among the multi-wavelength lights, a second-wavelength light is reflected to the gain area; and a phase control area where a phase of the second-wavelength light is shifted in response to a phase control signal, the phase control area being disposed between the first reflection layer and the second reflection layer.
    Type: Application
    Filed: June 30, 2009
    Publication date: June 24, 2010
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Jae-Heon Shin, Kyung-Hyun Park, Nam-Je Kim, Chul-Wook Lee, Eun-Deok Sim, Sang-Pil Han, Yong-Soon Baek
  • Patent number: 7599624
    Abstract: A channel switching function is added to a wavelength division multiplexing passive optical network (WDM-PON) system, which is an access optical network system, and the potential transmission rate is increased by combining wide wavelength tunable lasers and a time division multiplexing (TDM) data structure and properly using the necessary optical components. In addition, when the wavelength of a light source or an arrayed waveguide grating (AWG) changes, the wavelength is traced and the magnitude of a transmitted signal is maximized without an additional detour line using a loop-back network structure. Furthermore, fewer thermo-electric controllers (TECs) are required for stabilizing the temperature of an optical line terminal (OLT) using wavelength tunable lasers, each laser electrically changing its wavelength.
    Type: Grant
    Filed: October 17, 2005
    Date of Patent: October 6, 2009
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sahng Gi Park, Su Hwan Oh, Kwang Seong Choi, Moon Ho Park, Yong Soon Baek, Kwang Ryong Oh
  • Patent number: 7599403
    Abstract: A 1.55 ?m SLD having a laser diode (LD) region and a semiconductor optical amplifier (SOA) region, and a method of fabricating the same, are disclosed. The SLD includes: an InP substrate having a LD region and a SOA region for amplifying light emitted from the LD region; an optical waveguide having a BRS (buried ridge strip) structure having an active layer of resonant strip pattern formed on the InP substrate and extending from the SOA region to the LD region; a first electrode formed on the active layer in the SOA region, a second electrode formed on the active layer in the LD region and electrically isolated from the first electrode; and a current blocking region interposed between the first electrode and the second electrode in order to electrically isolate the first electrode and the second electrode from each other.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: October 6, 2009
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Moon Ho Park, Yong Soon Baek, Kwang Ryong Oh
  • Patent number: 7551658
    Abstract: Provided is a buried ridge waveguide laser diode that has improved temperature characteristics and can reduce optical loss by a leakage current. The buried ridge waveguide laser diode includes: a ridge region that extends vertically with a constant width and is composed of a selective etching layer and a first compound layer formed of a first conductive type material on a portion of the clad layer; and a p-n-p current blocking layer that has a thickness identical to the depth of the ridge region on the clad layer outside the ridge region and includes a second compound layer formed of a second conductive type material opposite to the first conductive type material. At this time, the current blocking layer includes the first compound layer extending on the second compound layer.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: June 23, 2009
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Su Hwan Oh, Ki soo Kim, Oh Kee Kwon, Yong soon Baek
  • Publication number: 20090154928
    Abstract: Provided is a wavelength division multiplexer/demultiplexer having a flat wavelength response. In the wavelength division multiplexer/demultiplexer, a modified taper-shaped optical waveguide is interposed between an input waveguide and a first slab waveguide, such that the distribution of an optical signal input to an Arrayed Waveguide Grating (AWG) has a sinc-function shape. Thus, a flat wavelength response can be obtained in an output waveguide. In addition, the modified taper-shaped optical waveguide interposed to obtain a flat wavelength response has a small size and a simple structure, and thus can be applied to a conventional wavelength division multiplexer/demultiplexer without a design change.
    Type: Application
    Filed: September 30, 2008
    Publication date: June 18, 2009
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH
    Inventors: Jang Uk SHIN, Sang Ho Park, Young Tak Han, Sang Pil Han, Yong Soon Baek
  • Publication number: 20090154923
    Abstract: Provided is a wavelength selective switch (WSS), and more particularly, a wavelength selective switch for electrically switching a wavelength without physical displacement. The wavelength selective switch includes an optical demultiplexer for dividing an input optical signal into signals having wavelengths corresponding to respective channels, selecting either the optical signal of each channel obtained by dividing the input optical signal or an optical signal input via an add port, and outputting the selected optical signal; and an optical multiplexer including an optical deflecting unit for individually deflecting the optical signals of the respective channels received from the optical demultiplexer according to supplied current or applied voltage, wherein the optical signal of each channel deflected by the optical deflecting unit is output to a specific output port.
    Type: Application
    Filed: September 11, 2008
    Publication date: June 18, 2009
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Oh Kee KWON, Yong Soon Baek, Jang Uk Shin, Young Tak Han, Dong Hun Lee, Chul Wook Lee, Eun Deok Sim, Jong Hoi Kim, Sang Pil Han, Sang Ho Park
  • Publication number: 20080212973
    Abstract: Provided is a bi-directional optical module including: a transmission optical element including an SOA (semiconductor optical amplifier) aligned on an optical axis of an LD (laser diode) formed on a substrate; and a reception optical element comprising a PD (photodiode) including a light receiving surface perpendicular to the optical axis of the LD of the transmission optical element.
    Type: Application
    Filed: July 21, 2006
    Publication date: September 4, 2008
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Jung Ho Song, Yong Soon Baek, Sung II Kim, Ki Soo Kim
  • Patent number: 7378292
    Abstract: Provided is a method of fabricating a semiconductor optical device for use in a subscriber or a wavelength division multiplexing (WDM) optical communication system, in which a laser diode (LD) and a semiconductor optical amplifier (SOA) are integrated in a single active layer. The laser diode (LD) and the semiconductor optical amplifier (SOA) are optically connected to each other, and electrically insulated from each other by ion injection, whereby light generated from the LD is amplified by the SOA to provide low oscillation start current and high intensity of output light when current is individually injected through each electrode.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: May 27, 2008
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Moon Ho Park, Sahng Gi Park, Su Hwan Oh, Yong Soon Baek, Kwang Ryong Oh, Gyung Ock Kim, Sung Bock Kim
  • Patent number: 7373032
    Abstract: Provided is an optical transceiver module of an optical transceiver, which is used for optical communications. The optical transceiver module prevents electrical crosstalk between a light source and a light receiver. Additionally, the optical transceiver module includes an optical transceiver unit including a light source and a light receiver together integrated into a substrate, a circuit unit including a drive circuit driving the light source and a detect circuit reading a signal of the light receiver, and a crosstalk prevention unit connected between the substrate and ground to prevent electrical crosstalk between the light source and the light receiver.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: May 13, 2008
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jeong Woo Park, Hyun Sung Ko, Yong Soon Baek
  • Patent number: RE44375
    Abstract: Provided is an optical transceiver module of an optical transceiver, which is used for optical communications. The optical transceiver module prevents electrical crosstalk between a light source and a light receiver. Additionally, the optical transceiver module includes an optical transceiver unit including a light source and a light receiver together integrated into a substrate, a circuit unit including a drive circuit driving the light source and a detect circuit reading a signal of the light receiver, and a crosstalk prevention unit connected between the substrate and ground to prevent electrical crosstalk between the light source and the light receiver.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: July 16, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jeong Woo Park, Hyun Sung Ko, Yong Soon Baek