Patents by Inventor Yongxing Hu

Yongxing Hu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240004125
    Abstract: A system may have windows. A window in the system may have first and second window layers such as structural layers of glass. The window may have a light guide layer between the first and second window layers. The light guide layer may have cladding layers and a core layer between the cladding layers. The core and cladding refractive index values may be selected so that the refractive index of the core is greater than the refractive index of the structural layers of glass while the refractive index of the claddings is less than the refractive index of the structural layer of glass. Light-scattering structures may be formed on the light guide to extract some of the light within the light guide and thereby provide illumination for the system.
    Type: Application
    Filed: September 18, 2023
    Publication date: January 4, 2024
    Inventors: David E Kingman, Clarisse Mazuir, Lai Wang, Se Hyun Ahn, Yongxing Hu, Yuan Chen
  • Patent number: 11848117
    Abstract: Highly uniform and thin silver nanowires are described having average diameters below 20 nm and a small standard deviation of the diameters. The silver nanowires have a high aspect ratio. The silver nanowires can be characterized by a small number of nanowires having a diameter greater than 18 nm as well as with a blue shifted narrow absorption spectrum in a dilute solution. Methods are described to allow for the synthesis of the narrow uniform silver nanowires. Transparent conductive films formed from the thin, uniform silver nanowires can have very low levels of haze and low values of ?L*, the diffusive luminosity, such that the transparent conductive films can provide little alteration of the appearance of a black background.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: December 19, 2023
    Assignee: C3 Nano, Inc.
    Inventors: Yongxing Hu, Ying-Syi Li, Xiqiang Yang, Jing Shun Ang, Ajay Virkar
  • Publication number: 20230399526
    Abstract: Metal salt based stabilizers are described that are effective to improve stability of sparse metal conductive films formed with metal nanowires, especially silver nanowires. Specifically, vanadium (+5) compositions can be effectively placed in coatings to provide desirable stabilization under accelerated wear testing conditions. Sparse metal conductive films can comprise fused metal nanostructured networks. Cobalt (+2) compounds can be incorporated as stabilization agents within nanowire inks to provide a high degree of stabilization without significantly interfering with the fusing process.
    Type: Application
    Filed: August 25, 2023
    Publication date: December 14, 2023
    Inventors: Xiqiang Yang, Yongxing Hu, Ajay Virkar, Arthur Yung-Chi Cheng, Faraz Asadi Manzour, Ying-Syi Li
  • Patent number: 11773275
    Abstract: Metal salt based stabilizers are described that are effective to improve stability of sparse metal conductive films formed with metal nanowires, especially silver nanowires. Specifically, vanadium (+5) compositions can be effectively placed in coatings to provide desirable stabilization under accelerated wear testing conditions. Sparse metal conductive films can comprise fused metal nanostructured networks. Cobalt (+2) compounds can be incorporated as stabilization agents within nanowire inks to provide a high degree of stabilization without significantly interfering with the fusing process.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: October 3, 2023
    Assignee: C3 Nano, Inc.
    Inventors: Xiqiang Yang, Yongxing Hu, Ajay Virkar, Arthur Yung-Chi Cheng, Faraz Azadi Manzour, Ying-Syi Li
  • Publication number: 20230250535
    Abstract: Metal nanowires with uniform noble metal coatings are described. Two methods, galvanic exchange and direct deposition, are disclosed for the successful formation of the uniform noble metal coatings. Both the galvanic exchange reaction and the direct deposition method benefit from the inclusion of appropriately strong binding ligands to control or mediate the coating process to provide for the formation of a uniform coating. The noble metal coated nanowires are effective for the production of stable transparent conductive films, which may comprise a fused metal nanostructured network.
    Type: Application
    Filed: March 9, 2023
    Publication date: August 10, 2023
    Inventors: Yongxing Hu, Xiqiang Yang, Ying-Syi Li, Alexander Seung-il Hong, Melanie Mariko Inouye, Yadong Cao, Ajay Virkar
  • Patent number: 11668010
    Abstract: Metal nanowires with uniform noble metal coatings are described. Two methods, galvanic exchange and direct deposition, are disclosed for the successful formation of the uniform noble metal coatings. Both the galvanic exchange reaction and the direct deposition method benefit from the inclusion of appropriately strong binding ligands to control or mediate the coating process to provide for the formation of a uniform coating. The noble metal coated nanowires are effective for the production of stable transparent conductive films, which may comprise a fused metal nanostructured network.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: June 6, 2023
    Assignee: C3 Nano, Inc.
    Inventors: Yongxing Hu, Xiqiang Yang, Ying-Syi Li, Alexander Seung-il Hong, Melanie Mariko Inouye, Yadong Cao, Ajay Virkar
  • Patent number: 11498129
    Abstract: Desirable methods for larger scale silver nanoplate synthesis are described along with methods for applying a noble metal coating onto the silver nanoplates to form coated silver nanoplates with a desirable absorption spectrum. The silver nanoplates are suitable for use in coatings for altering the hue of a transparent film. The hue adjustment can be particularly desirable for transparent conductive films.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: November 15, 2022
    Assignee: C3 Nano, Inc.
    Inventors: Yongxing Hu, Alexander Seung-il Hong, Ying-Syi Li, Xiqiang Yang, Yadong Cao, Ajay Virkar
  • Publication number: 20210340386
    Abstract: Nanoscale colorants are introduced to adjust the hue of transparent conductive films, such as to provide a whiter film. The transparent conductive films can have sparse metal conductive layers, which can be formed using silver nanowires. Color of the film can be evaluated using standard color parameters. In particular, values of color parameter b* can be reduced with the nanoscale colorants without unacceptably changing other parameters, such as haze, a* and transparency.
    Type: Application
    Filed: July 8, 2021
    Publication date: November 4, 2021
    Inventors: Xiqiang Yang, Yadong Cao, Yongxing Hu, Hua Gu, Ying-Syi Li, Ajay Virkar
  • Patent number: 11111396
    Abstract: Nanoscale colorants are introduced to adjust the hue of transparent conductive films, such as to provide a whiter film. The transparent conductive films can have sparse metal conductive layers, which can be formed using silver nanowires. Color of the film can be evaluated using standard color parameters. In particular, values of color parameter b* can be reduced with the nanoscale colorants without unacceptably changing other parameters, such as haze, a* and transparency.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: September 7, 2021
    Assignee: C3 Nano, Inc.
    Inventors: Xiqiang Yang, Yadong Cao, Yongxing Hu, Hua Gu, Ying-Syi Li, Ajay Virkar
  • Publication number: 20210265073
    Abstract: Highly uniform and thin silver nanowires are described having average diameters below 20 nm and a small standard deviation of the diameters. The silver nanowires have a high aspect ratio. The silver nanowires can be characterized by a small number of nanowires having a diameter greater than 18 nm as well as with a blue shifted narrow absorption spectrum in a dilute solution. Methods are described to allow for the synthesis of the narrow uniform silver nanowires. Transparent conductive films formed from the thin, uniform silver nanowires can have very low levels of haze and low values of ?L*, the diffusive luminosity, such that the transparent conductive films can provide little alteration of the appearance of a black background.
    Type: Application
    Filed: May 11, 2021
    Publication date: August 26, 2021
    Inventors: Yongxing Hu, Ying-Syi Li, Xiqiang Yang, Jing Shun Ang, Ajay Virkar
  • Patent number: 11037694
    Abstract: Highly uniform and thin silver nanowires are described having average diameters below 20 nm and a small standard deviation of the diameters. The silver nanowires have a high aspect ratio. The silver nanowires can be characterized by a small number of nanowires having a diameter greater than 18 nm as well as with a blue shifted narrow absorption spectrum in a dilute solution. Methods are described to allow for the synthesis of the narrow uniform silver nanowires. Transparent conductive films formed from the thin, uniform silver nanowires can have very low levels of haze and low values of ?L*, the diffusive luminosity, such that the transparent conductive films can provide little alteration of the appearance of a black background.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: June 15, 2021
    Assignee: C3 Nano, Inc.
    Inventors: Yongxing Hu, Ying-Syi Li, Xiqiang Yang, Jing Shun Ang, Ajay Virkar
  • Publication number: 20210142926
    Abstract: Desirable methods for larger scale silver nanoplate synthesis are described along with methods for applying a noble metal coating onto the silver nanoplates to form coated silver nanoplates with a desirable absorption spectrum. The silver nanoplates are suitable for use in coatings for altering the hue of a transparent film. The hue adjustment can be particularly desirable for transparent conductive films.
    Type: Application
    Filed: December 23, 2020
    Publication date: May 13, 2021
    Inventors: Yongxing Hu, Alexander Seung-il Hong, Ying-Syi Li, Xiqiang Yang, Yadong Cao, Ajay Virkar
  • Patent number: 10902965
    Abstract: Desirable methods for larger scale silver nanoplate synthesis are described along with methods for applying a noble metal coating onto the silver nanoplates to form coated silver nanoplates with a desirable absorption spectrum. The silver nanoplates are suitable for use in coatings for altering the hue of a transparent film. The hue adjustment can be particularly desirable for transparent conductive films.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: January 26, 2021
    Assignee: C3Nano Inc.
    Inventors: Yongxing Hu, Alexander Seung-il Hong, Ying-Syi Li, Xiqiang Yang, Yadong Cao, Ajay Virkar
  • Patent number: 10714230
    Abstract: Highly uniform and thin silver nanowires are described having average diameters below 20 nm and a small standard deviation of the diameters. The silver nanowires have a high aspect ratio. The silver nanowires can be characterized by a small number of nanowires having a diameter greater than 18 nm as well as with a blue shifted narrow absorption spectrum in a dilute solution. Methods are described to allow for the synthesis of the narrow uniform silver nanowires. Transparent conductive films formed from the thin, uniform silver nanowires can have very low levels of haze and low values of ?L*, the diffusive luminosity, such that the transparent conductive films can provide little alteration of the appearance of a black background.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: July 14, 2020
    Assignee: C3Nano Inc.
    Inventors: Yongxing Hu, Ying-Syi Li, Xiqiang Yang, Jing Shun Ang, Ajay Virkar
  • Publication number: 20190378633
    Abstract: Highly uniform and thin silver nanowires are described having average diameters below 20 nm and a small standard deviation of the diameters. The silver nanowires have a high aspect ratio. The silver nanowires can be characterized by a small number of nanowires having a diameter greater than 18 nm as well as with a blue shifted narrow absorption spectrum in a dilute solution. Methods are described to allow for the synthesis of the narrow uniform silver nanowires. Transparent conductive films formed from the thin, uniform silver nanowires can have very low levels of haze and low values of ?L*, the diffusive luminosity, such that the transparent conductive films can provide little alteration of the appearance of a black background.
    Type: Application
    Filed: August 23, 2019
    Publication date: December 12, 2019
    Inventors: Yongxing Hu, Ying-Syi Li, Xiqiang Yang, Jing Shun Ang, Ajay Virkar
  • Patent number: 10438714
    Abstract: Highly uniform and thin silver nanowires are described having average diameters below 20 nm and a small standard deviation of the diameters. The silver nanowires have a high aspect ratio. The silver nanowires can be characterized by a small number of nanowires having a diameter greater than 18 nm as well as with a blue shifted narrow absorption spectrum in a dilute solution. Methods are described to allow for the synthesis of the narrow uniform silver nanowires. Transparent conductive films formed from the thin, uniform silver nanowires can have very low levels of haze and low values of ?L*, the diffusive luminosity, such that the transparent conductive films can provide little alteration of the appearance of a black background.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: October 8, 2019
    Assignee: C3Nano Inc.
    Inventors: Yongxing Hu, Ying-Syi Li, Xiqiang Yang, Jing Shun Ang, Ajay Virkar
  • Publication number: 20190172600
    Abstract: Highly uniform and thin silver nanowires are described having average diameters below 20 nm and a small standard deviation of the diameters. The silver nanowires have a high aspect ratio. The silver nanowires can be characterized by a small number of nanowires having a diameter greater than 18 nm as well as with a blue shifted narrow absorption spectrum in a dilute solution. Methods are described to allow for the synthesis of the narrow uniform silver nanowires. Transparent conductive films formed from the thin, uniform silver nanowires can have very low levels of haze and low values of ?L*, the diffusive luminosity, such that the transparent conductive films can provide little alteration of the appearance of a black background.
    Type: Application
    Filed: April 12, 2018
    Publication date: June 6, 2019
    Inventors: Yongxing Hu, Ying-Syi Li, Xiqiang Yang, Jing Shun Ang, Ajay Virkar
  • Publication number: 20190172602
    Abstract: Highly uniform and thin silver nanowires are described having average diameters below 20 nm and a small standard deviation of the diameters. The silver nanowires have a high aspect ratio. The silver nanowires can be characterized by a small number of nanowires having a diameter greater than 18 nm as well as with a blue shifted narrow absorption spectrum in a dilute solution. Methods are described to allow for the synthesis of the narrow uniform silver nanowires. Transparent conductive films formed from the thin, uniform silver nanowires can have very low levels of haze and low values of ?L*, the diffusive luminosity, such that the transparent conductive films can provide little alteration of the appearance of a black background.
    Type: Application
    Filed: January 16, 2019
    Publication date: June 6, 2019
    Inventors: Yongxing Hu, Ying-Syi Li, Xiqiang Yang, Jing Shun Ang, Ajay Virkar
  • Publication number: 20190172601
    Abstract: Highly uniform and thin silver nanowires are described having average diameters below 20 nm and a small standard deviation of the diameters. The silver nanowires have a high aspect ratio. The silver nanowires can be characterized by a small number of nanowires having a diameter greater than 18 nm as well as with a blue shifted narrow absorption spectrum in a dilute solution. Methods are described to allow for the synthesis of the narrow uniform silver nanowires. Transparent conductive films formed from the thin, uniform silver nanowires can have very low levels of haze and low values of ?L*, the diffusive luminosity, such that the transparent conductive films can provide little alteration of the appearance of a black background.
    Type: Application
    Filed: January 16, 2019
    Publication date: June 6, 2019
    Inventors: Yongxing Hu, Ying-Syi Li, Xiqiang Yang, Jing Shun Ang, Ajay Virkar
  • Publication number: 20190066863
    Abstract: Desirable methods for larger scale silver nanoplate synthesis are described along with methods for applying a noble metal coating onto the silver nanoplates to form coated silver nanoplates with a desirable absorption spectrum. The silver nanoplates are suitable for use in coatings for altering the hue of a transparent film. The hue adjustment can be particularly desirable for transparent conductive films.
    Type: Application
    Filed: October 30, 2018
    Publication date: February 28, 2019
    Inventors: Yongxing Hu, Alexander Seung-il Hong, Ying-Syi Li, Xiqiang Yang, Yadong Cao, Ajay Virkar