Patents by Inventor Yongzhang Huang

Yongzhang Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070278427
    Abstract: A method derives a terminal return current or upstream current to adjust and/or compensate for variations in beam current during ion implantation. One or more individual upstream current measurements are obtained from a region of an ion implantation system. A terminal return current, or composite upstream current, is derived from the one or more current measurements. The terminal return current is then employed to adjust scanning or dose of an ion beam in order to facilitate beam current uniformity at a target wafer.
    Type: Application
    Filed: October 4, 2006
    Publication date: December 6, 2007
    Inventors: Yongzhang Huang, Brian S. Freer, John Ye, Christopher Godfrey, Michael A. Graf, Patrick Splinter
  • Publication number: 20060284071
    Abstract: A system, method, and apparatus for mitigating contamination associated with ion implantation are provided. An ion source, end station, and mass analyzer positioned between the ion source and the end station are provided, wherein an ion beam is formed from the ion source and selectively travels through the mass analyzer to the end station, based on a position of a beam stop assembly. The beam stop assembly selectively prevents the ion beam from entering and/or exiting the mass analyzer, therein minimizing contamination associated with an unstable ion source during transition periods such as a start-up of the ion implantation system.
    Type: Application
    Filed: June 2, 2006
    Publication date: December 21, 2006
    Inventors: John Vanderpot, Yongzhang Huang
  • Publication number: 20060284117
    Abstract: A system, method, and apparatus for mitigating contamination during ion implantation are provided. An ion source, end station, and mass analyzer positioned between the ion source and the end station are provided, wherein an ion beam is formed from the ion source and travels through the mass analyzer to the end station. An ion beam dump assembly comprising a particle collector, particle attractor, and shield are associated with the mass analyzer, wherein an electrical potential of the particle attractor is operable to attract and constrain contamination particles within the particle collector, and wherein the shield is operable to shield the electrical potential of the particle attractor from an electrical potential of an ion beam within the mass analyzer.
    Type: Application
    Filed: June 2, 2006
    Publication date: December 21, 2006
    Inventors: John Vanderpot, Yongzhang Huang
  • Publication number: 20060219938
    Abstract: A system, apparatus, and method for changing source gases used for ion implantation is provided. A source chamber has a housing having one or more sidewalls and an extraction plate, wherein the one or more sidewalls and the extraction plate enclose an interior region of the source chamber. One or more inlets provide a fluid communication between one or more ionizable material sources and the interior region. An extraction aperture in the extraction plate provides a fluid communication between the interior region of the source chamber and a beam path region external to the source chamber. One or more diffusion apertures in the one or more sidewalls of the housing further provide a fluid communication between the interior region and a diffusion region external to the ion source chamber, wherein deposited ions are operable to diffuse out of the source chamber through the diffusion apertures.
    Type: Application
    Filed: March 8, 2005
    Publication date: October 5, 2006
    Inventor: Yongzhang Huang
  • Patent number: 6881966
    Abstract: A magnetic deflector for an ion beam is disclosed and comprises first and second coils. The coils are positioned above and below the beam, respectively, and extend along a width of the beam. Current passes through the coils to generate a magnetic field therebetween that is generally perpendicular to a direction of travel of the beam along substantially the entire width thereof. In another aspect of the invention, a method of deflecting a beam prior to implantation into a workpiece is disclosed. The method includes determining one or more properties associated with the beam and selectively activating one of a magnetic deflection module and an electrostatic deflection module based on the determination.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: April 19, 2005
    Assignee: Axcelis Technologies, Inc.
    Inventors: Victor M. Benveniste, Robert D. Rathmell, Yongzhang Huang
  • Patent number: 6835930
    Abstract: A mass analyzer for a ribbon shaped ion beam is disclosed. The mass analyzer comprises a pair of coils that define an entrance end and an exit end of the analyzer. Field clamps are employed at or proximate to one or more of the entrance and exit ends of the mass analyzer. The field clamps operate to terminate fringing fields close to the entrance and exit ends of the mass analyzer, thereby reducing the impact of such fringing fields on the ribbon beam and improving beam uniformity.
    Type: Grant
    Filed: January 8, 2004
    Date of Patent: December 28, 2004
    Assignee: Axcelis Technologies, Inc.
    Inventors: Victor M. Benveniste, Yongzhang Huang
  • Publication number: 20040227074
    Abstract: A mass analyzer for a ribbon shaped ion beam is disclosed. The mass analyzer comprises a pair of coils that define an entrance end and an exit end of the analyzer. Field clamps are employed at or proximate to one or more of the entrance and exit ends of the mass analyzer. The field clamps operate to terminate fringing fields close to the entrance and exit ends of the mass analyzer, thereby reducing the impact of such fringing fields on the ribbon beam and improving beam uniformity.
    Type: Application
    Filed: January 8, 2004
    Publication date: November 18, 2004
    Inventors: Victor M. Benveniste, Yongzhang Huang
  • Publication number: 20040227105
    Abstract: A magnetic deflector for an ion beam is disclosed and comprises first and second coils. The coils are positioned above and below the beam, respectively, and extend along a width of the beam. Current passes through the coils to generate a magnetic field therebetween that is generally perpendicular to a direction of travel of the beam along substantially the entire width thereof. In another aspect of the invention, a method of deflecting a beam prior to implantation into a workpiece is disclosed. The method includes determining one or more properties associated with the beam and selectively activating one of a magnetic deflection module and an electrostatic deflection module based on the determination.
    Type: Application
    Filed: June 13, 2003
    Publication date: November 18, 2004
    Inventors: Victor M. Benveniste, Robert D. Rathmell, Yongzhang Huang
  • Patent number: 6777696
    Abstract: An accelerating structure and related method for accelerating/decelerating ions of an ion beam are disclosed. The structure and related method are suitable for use in selectively implanting ions into a workpiece or wafer during semiconductor fabrication to selectively dope areas of the wafer. In addition to accelerating and/or decelerating ions, aspects of the present invention serve to focus as well as to deflect ions of an ion beam. This is accomplished by routing the ion beam through electrodes having potentials developed thereacross. The ion beam is also decontaminated as electrically neutral contaminants within the beam are not affected by the potentials and continue on generally traveling along an original path of the ion beam. The electrodes are also arranged in such a fashion so as to minimize the distance the beam has to travel, thereby mitigating the opportunity for beam blow up.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: August 17, 2004
    Assignee: Axcelis Technologies, Inc.
    Inventors: Robert D. Rathmell, Bo H. Vanderberg, Yongzhang Huang
  • Patent number: 6774378
    Abstract: The present invention concerns a method of tuning a plurality of electrostatic quadrupoles used for focusing an ion beam implanter. The steps of the method include: classifying the plurality of electrostatic quadrupoles into one of a predetermined number of groups, and for each of the predetermined number of groups, tuning the quadrupoles in the group by iteratively substituting values for a voltage ton be applied to each of the quadrupoles in the group using a multi-variable heuristic algorithm and concurrently measuring final beam current measured downstream of the ion accelerator to determine a set of applied voltage values that maximize the final beam current among those applied voltage values tested and utilizing the set of applied voltage values to tune the quadrupoles in the group. If the resulting ion beam is suitable, utilizing the determined applied voltages to tune the quadrupoles.
    Type: Grant
    Filed: October 8, 2003
    Date of Patent: August 10, 2004
    Assignee: Axcelis Technologies, Inc.
    Inventors: Yongzhang Huang, Xiangyang Wu, Hans J. Rutishauser
  • Patent number: 6770888
    Abstract: A mass analyzer for a ribbon shaped ion beam is disclosed. The mass analyzer comprises a pair of coils that define an entrance end and an exit end of the analyzer. Field clamps are employed at or proximate to one or more of the entrance and exit ends of the mass analyzer. The field clamps operate to terminate fringing fields close to the entrance and exit ends of the mass analyzer, thereby reducing the impact of such fringing fields on the ribbon beam and improving beam uniformity.
    Type: Grant
    Filed: June 25, 2003
    Date of Patent: August 3, 2004
    Assignee: Axcelis Technologies, Inc.
    Inventors: Victor M. Benveniste, Yongzhang Huang
  • Patent number: 6441382
    Abstract: A deceleration electrode for a high-energy, ultra-low ion implanter is provided. The deceleration electrodes are “tilted” (i.e., not perpendicular with respect the ion beam axis. The deceleration electrode reduces the energy of the ion beam and simultaneously separates neutral particles out of the ion beam. The length of the deceleration electrode is slightly longer than a conventional deceleration electrode. However, because the device functions to also separate neutral particles out of the ion beam, the need for a separate neutral particle separation device is eliminated. Thus, the compact design of the dual function electrode configuration permits a shortening of the distance that a high-current, ultra-low energy ion beam must travel to the target wafer. Further, because the neutral particles can be almost completely separated from the ion beam, the decel ratio may be set high enabling an ultra-low energy, high current ion beam.
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: August 27, 2002
    Assignee: Axcelis Technologies, Inc.
    Inventor: Yongzhang Huang