Patents by Inventor Yongzhao Du

Yongzhao Du has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8786864
    Abstract: A circular common-path point diffraction interference wavefront sensor includes an optical matching system, a beam-splitter, a first reflection mirror, a second reflection mirror, a first Fourier lens, a second Fourier lens, a charge-coupled device (CCD) detector, a computer system, and a two-pinhole mask having a reference pinhole and a testing window and placed at a confocal plane of the first Fourier lens and the second Fourier lens. A testing beam is divided into two beams through the beam-splitter. One beam makes the pinhole diffraction by the reference pinhole, thereby producing the approximately ideal plane wave as the reference wave. Another beam passes through the testing window almost without any attenuation as the signal wave. The spatially linear carrier frequency is introduced by adjusting the tilt angle of the beam-splitter. The present invention is adapted for all kinds of dynamic and static detection field of wavefront phase.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: July 22, 2014
    Assignee: Sichuan University
    Inventors: Guoying Feng, Yongzhao Du, Shouhuan Zhou
  • Publication number: 20120140242
    Abstract: A circular common-path point diffraction interference wavefront sensor includes an optical matching system, a beam-splitter, a first reflection mirror, a second reflection mirror, a first Fourier lens, a second Fourier lens, a charge-coupled device (CCD) detector, a computer system, and a two-pinhole mask having a reference pinhole and a testing window and placed at a confocal plane of the first Fourier lens and the second Fourier lens. A testing beam is divided into two beams through the beam-splitter. One beam makes the pinhole diffraction by the reference pinhole, thereby producing the approximately ideal plane wave as the reference wave. Another beam passes through the testing window almost without any attenuation as the signal wave. The spatially linear carrier frequency is introduced by adjusting the tilt angle of the beam-splitter. The present invention is adapted for all kinds of dynamic and static detection field of wavefront phase.
    Type: Application
    Filed: November 23, 2011
    Publication date: June 7, 2012
    Inventors: Guoying Feng, Yongzhao Du, Shouhuan Zhou