Patents by Inventor Yongzhao Wang

Yongzhao Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11962526
    Abstract: A method for obtaining a quantity of resource elements in a communication process, comprising: determines a downlink control information format of downlink control information, obtains, based on the downlink control information format, a quantity of resource elements occupied by a demodulation reference signal (DMRS); and determines a size of transport block (TBS) based on the quantity of resource elements occupied by the DMRS.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: April 16, 2024
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Ting Wang, Yongzhao Cao, Yi Wang, Hao Tang, Zhenfei Tang
  • Patent number: 11504698
    Abstract: A Ni—Al2O3@Al2O3—SiO2 catalyst with coated structure is provided. The catalyst has a specific surface area of 98 m2/g to 245 m2/g, and a pore volume of 0.25 cm3/g to 1.1 cm3/g. A mass ratio of an Al2O3 carrier to active component Ni in the catalyst is Al2O3:Ni=100:4˜26, a mass ratio of the Al2O3 carrier to an Al2O3—SiO2 coating layer is Al2O3:Al2O3—SiO2=100:0.1˜3, and a molar ratio of Al to Si in the Al2O3—SiO2 coating layer is 0.01 to 1. Ni particles are distributed on a surface of the Al2O3 carrier in an amorphous or highly dispersed state and have a grain size less than or equal to 8 nm, and the coating layer is filled among the Ni particles.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: November 22, 2022
    Assignee: SHANXI UNIVERSITY
    Inventors: Yongxiang Zhao, Haitao Li, Lili Zhao, Hongxi Zhang, Zijin Sun, Yongzhao Wang
  • Publication number: 20200009538
    Abstract: A Ni—Al2O3@Al2O3—SiO2 catalyst with coated structure is provided. The catalyst has a specific surface area of 98 m2/g to 245 m2/g, and a pore volume of 0.25 cm3/g to 1.1 cm3/g. A mass ratio of an Al2O3 carrier to active component Ni in the catalyst is Al2O3:Ni=100:4˜26, a mass ratio of the Al2O3 carrier to an Al2O3—SiO2 coating layer is Al2O3:Al2O3—SiO2=100:0.1˜3, and a molar ratio of Al to Si in the Al2O3—SiO2 coating layer is 0.01 to 1. Ni particles are distributed on a surface of the Al2O3 carrier in an amorphous or highly dispersed state and have a grain size less than or equal to 8 nm, and the coating layer is filled among the Ni particles.
    Type: Application
    Filed: January 25, 2018
    Publication date: January 9, 2020
    Inventors: Yongxiang ZHAO, Haitao LI, Lili ZHAO, Hongxi ZHANG, Zijin SUN, Yongzhao WANG
  • Patent number: 6235519
    Abstract: The present invention relates to an isolated nucleic acid molecule which encodes one or more of the enzymes which catalyze one or more steps in the desulfurization of thiophene, or a homologue or active fragment thereof. The invention also includes a recombinant microorganism containing one or more such heterologous nucleic acid molecules. The invention also provides a method for desulfurizing a fossil fuel containing thiophene and/or one or more substituted thiophenes. The method comprises contacting the fossil fuel with an organism containing a recombinant nucleic acid molecule which encodes an enzyme which catalyzes the desulfurization of thiophene.
    Type: Grant
    Filed: February 26, 1998
    Date of Patent: May 22, 2001
    Assignee: Energy Biosystems Corporation
    Inventors: Yongzhao Wang, John D. Childs, Charles H. Squires