Patents by Inventor Yongzhuo Huangfu

Yongzhuo Huangfu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9580815
    Abstract: A method and apparatus for nanocrystallizing a metal surface by laser-induced shock wave-accelerated nanoparticles. The apparatus comprises a control system, a light guiding system, a workbench control system and an auxiliary system, wherein the auxiliary system comprises an air compressor, a paint feeder device, a nanoparticle nozzle, a powder feeder device, an exhaust, a sealed working chamber and a metal nanoparticle recycler device. The method comprises the following steps: pre-processing and fixing a workpiece; activating the air compressor to feed a powder; controlling and adjusting the paint feeder device to eject a black paint; transmitting a high-power pulse laser beam; recycling excess metal nanoparticles; and rinsing non-vaporized/ionized black paint off a surface of the workpiece.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: February 28, 2017
    Assignee: JIANGSU UNIVERSITY
    Inventors: Xudong Ren, Shouqi Yuan, Yinghong Li, Liang Ruan, Yongkang Zhang, Naifei Ren, Yongzhuo Huangfu, Cheng Wang, Weifang He, Fengze Dai, Tian Zhang
  • Patent number: 9327313
    Abstract: A method and apparatus for acquiring a nanostructured coating on a metal surface by using an intense shock wave generated by continuous explosion of a laser-induced plasma is provided. The method comprises: irradiating a laser beam on a black paint surface of an upper opening of a high pressure resistant glass pipe having a black paint strip arranged therein; the black paint absorbing the light energy and producing a plasma; generating an initial plasma explosion shock wave; transmitting the initial plasma explosion shock wave in the high pressure resistant glass pipe; generating a plasma cloud reaching a lower opening of a glass catheter; and, the shock wave pressure outputted embedding nanoparticles into a surface of a workpiece. The apparatus comprises the high pressure-resistant glass pipe with a zigzagging switchback shape or a spiral and inverted cone shape.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: May 3, 2016
    Assignee: JIANGSU UNIVERSITY
    Inventors: Xudong Ren, Shouqi Yuan, Cheng Wang, Yongzhuo Huangfu, Liang Ruan, Yongkang Zhang, Naifei Ren, Yinghong Li, Weifang He, Fengze Dai, Tian Zhang
  • Publication number: 20140205764
    Abstract: A method and apparatus for acquiring a nanostructured coating on a metal surface by using an intense shock wave generated by continuous explosion of a laser-induced plasma is provided. The method comprises: irradiating a laser beam on a black paint surface of an upper opening of a high pressure resistant glass pipe having a black paint strip arranged therein; the black paint absorbing the light energy and producing a plasma; generating an initial plasma explosion shock wave; transmitting the initial plasma explosion shock wave in the high pressure resistant glass pipe; generating a plasma cloud reaching a lower opening of a glass catheter; and, the shock wave pressure outputted embedding nanoparticles into a surface of a workpiece. The apparatus comprises the high pressure-resistant glass pipe with a zigzagging switchback shape or a spiral and inverted cone shape.
    Type: Application
    Filed: July 28, 2011
    Publication date: July 24, 2014
    Applicants: AIR FORCE ENGINEERING UNIVERSITY OF THE CHINESE PEOPLES LIBERATION ARMY, JIANGSU UNIVERSITY
    Inventors: Xudong Ren, Cheng Wang, Yongzhuo Huangfu, Wei Chu, Yinghong Li, Weifeng He, Xin Zhou, Liang Ruan, Yongkang Zhang, Fengze Dai, Tian Zhang
  • Publication number: 20140178593
    Abstract: A method and apparatus for nanocrystallizing a metal surface by laser-induced shock wave-accelerated nanoparticles. The apparatus comprises a control system, a light guiding system, a workbench control system and an auxiliary system, wherein the auxiliary system comprises an air compressor, a paint feeder device, a nanoparticle nozzle, a powder feeder device, an exhaust, a sealed working chamber and a metal nanoparticle recycler device. The method comprises the following steps: pre-processing and fixing a workpiece; activating the air compressor to feed a powder; controlling and adjusting the paint feeder device to eject a black paint; transmitting a high-power pulse laser beam; recycling excess metal nanoparticles; and rinsing non-vaporized/ionized black paint off a surface of the workpiece.
    Type: Application
    Filed: July 28, 2011
    Publication date: June 26, 2014
    Applicants: Air Force Engineering University of the Chinese People's Liberation Army, Jiangsu University
    Inventors: Xudong Ren, Yinghong Li, Liang Ruan, Cheng Wang, Wei Chu, Weifeng He, Xin Zhou, Yongzhuo Huangfu, Yongkang Zhang, Fengze Dai, Tian Zhang