Patents by Inventor Yoo Eup Hyung

Yoo Eup Hyung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7498102
    Abstract: Disclosed is a nonaqueous and nonvolatile liquid type polymeric electrolyte comprising poly(siloxane-g-ethylene oxide). This electrolyte provides significant safety and stability. The present invention solves the problems of volatility, flammability and chemical reactivity of lithium ion type electrolytes. The disclosed electrolyte exhibits excellent stability, conductivity and low impedance characteristics. The electrolyte comprises a new class of structural siloxane polymers with one or more poly(ethylene oxide) side chains. The inorganic siloxanes comprising the main backbone of the copolymers are thermally very stable and resistant to decomposition by heat. Because the main chain of the disclosed class of electrolytes is an Si—O linkage, initiation of the combustion cycle is inhibited or prevented.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: March 3, 2009
    Inventors: Bookeun Oh, Khalil Amine, Yoo-Eup Hyung, Donald R. Vissers, Hisashi Tsukamoto
  • Publication number: 20080070121
    Abstract: Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. Suppression of gas generation is achieved in the cell through the addition of an additive or additives to the electrolyte system of the respective cell, or to the cell whether it be a liquid, a solid- or plastized polymer electrolyte system. The gas suppression additives are preferably based on unsaturated hydrocarbons.
    Type: Application
    Filed: November 20, 2007
    Publication date: March 20, 2008
    Inventors: Yoo-Eup Hyung, Donald Vissers, Khalil Amine
  • Publication number: 20070231679
    Abstract: A center pin and a lithium ion secondary battery are provided. The center pin has a hollow body and a solid extinguishant is disposed inside the hollow body. The solid extinguishant has a certain shape that can fit into the hollow body, and can be made by compressing a powder extinguishing substance. Top and bottom of the center pin are initially closed by blocking members to reduce a dead volume in a battery. The top and bottom of the center pin open at high temperature so that the solid extinguishant is liquefied and flows out of the center pin. The liquefied extinguishant at the high temperature prevent the battery from igniting.
    Type: Application
    Filed: March 21, 2007
    Publication date: October 4, 2007
    Inventors: Seok-Gyun Chang, Yoo-Eup Hyung
  • Publication number: 20070154789
    Abstract: A lithium ion secondary battery in which an electrode assembly is easily impregnated with an electrolyte is provided. The lithium ion secondary battery includes an electrode assembly wrapped by a sealing tape, an upper insulating plate positioned on the top of the electrode assembly, a lower insulating plate positioned at the bottom of the electrode assembly, a case for accommodating the electrode assembly, and a cap assembly for sealing the case. In one embodiment, the upper insulating plate has holes which may include a form of a mesh. In another embodiment, the lower insulating plate has various shapes of recesses on the surface. The surface of the lower insulating plate may be coated with a material that has an affinity for the electrolyte. An inner surface of the case may have various shapes of recesses or grooves. The sealing tape may be coated with a material that has an affinity for an electrolyte.
    Type: Application
    Filed: December 28, 2006
    Publication date: July 5, 2007
    Inventors: Seok-Gyun Chang, Jung-Seog Kim, Yoo-Eup Hyung, Yong-Tae Kim, Sang-Bong Nam
  • Patent number: 7026074
    Abstract: A lithium battery with improved safety that utilizes one or more additives in the battery electrolyte solution wherein a lithium salt is dissolved in an organic solvent, which may contain propylene, carbonate. For example, a blend of 2 wt % triphenyl phosphate (TPP), 1 wt % diphenyl monobutyl phosphate (DMP) and 2 wt % vinyl ethylene carbonate additives has been found to significantly enhance the safety and performance of Li-ion batteries using a LiPF6 salt in EC/DEC electrolyte solvent. The invention relates to both the use of individual additives and to blends of additives such as that shown in the above example at concentrations of 1 to 4-wt % in the lithium battery electrolyte. This invention relates to additives that suppress gas evolution in the cell, passivate graphite electrode and protect it from exfoliating in the presence of propylene carbonate solvents in the electrolyte, and retard flames in the lithium batteries.
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: April 11, 2006
    Assignee: The University of Chicago
    Inventors: Chun-hua Chen, Yoo Eup Hyung, Donald R. Vissers, Khalil Amine
  • Publication number: 20040151951
    Abstract: Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. Suppression of gas generation is achieved in the cell through the addition of an additive or additives to the electrolyte system of the respective cell, or to the cell whether it be a liquid, a solid- or plastized polymer electrolyte system. The gas suppression additives are preferably based on unsaturated hydrocarbons.
    Type: Application
    Filed: December 17, 2003
    Publication date: August 5, 2004
    Applicant: The University of Chicago
    Inventors: Yoo-Eup Hyung, Donald R. Vissers, Khalil Amine
  • Publication number: 20030180625
    Abstract: Disclosed is a nonaqueous and nonvolatile liquid type polymeric electrolyte comprising poly(siloxane-g-ethylene oxide). This electrolyte provides significant safety and stability. The present invention solves the problems of volatility, flammability and chemical reactivity of lithium ion type electrolytes. The disclosed electrolyte exhibits excellent stability, conductivity and low impedance characteristics. The electrolyte comprises a new class of structural siloxane polymers with one or more poly(ethylene oxide) side chains. The inorganic siloxanes comprising the main backbone of the copolymers are thermally very stable and resistant to decomposition by heat. Because the main chain of the disclosed class of electrolytes is an Si—O linkage, initiation of the combustion cycle is inhibited or prevented.
    Type: Application
    Filed: June 12, 2002
    Publication date: September 25, 2003
    Inventors: Bookeun Oh, Khalil Amine, Yoo-Eup Hyung, Donald R. Vissers, Hisashi Tsukamoto
  • Publication number: 20030180624
    Abstract: Disclosed is an improved solid electrolyte made of an interpenetrating network type solid polymer comprised of two compatible phases: a crosslinked polymer for mechanical strength and chemical stability, and an ionic conducting phase. The highly branched siloxane polymer of the present invention has one or more poly(ethylene oxide) (“PEO”) groups as a side chain. The PEO group is directly grafted to silicon atoms in the siloxane polymer. This kind of branched type siloxane polymer is stably anchored in the network structure and provides continuous conducting paths in all directions throughout the IPN solid polymer electrolyte. Also disclosed is a method of making an electrochemical cell incorporating the electrolyte. A cell made accordingly has an extremely high cycle life and electrochemical stability.
    Type: Application
    Filed: March 22, 2002
    Publication date: September 25, 2003
    Inventors: Bookeun Oh, Khalil Amine, Yoo-Eup Hyung, Donald R. Vissers
  • Publication number: 20030157413
    Abstract: A lithium battery with improved safety that utilizes one or more additives in the battery electrolyte solution wherein a lithium salt is dissolved in an organic solvent, which may contain propylene, carbonate. For example, a blend of 2 wt % triphenyl phosphate (TPP), 1 wt % diphenyl monobutyl phosphate (DMP) and 2 wt % vinyl ethylene carbonate additives has been found to significantly enhance the safety and performance of Li-ion batteries using a LiPF6 salt in EC/DEC electrolyte solvent. The invention relates to both the use of individual additives and to blends of additives such as that shown in the above example at concentrations of 1 to 4-wt % in the lithium battery electrolyte. This invention relates to additives that suppress gas evolution in the cell, passivate graphite electrode and protect it from exfoliating in the presence of propylene carbonate solvents in the electrolyte, and retard flames in the lithium batteries.
    Type: Application
    Filed: February 15, 2002
    Publication date: August 21, 2003
    Inventors: Chun-Hua Chen, Yoo Eup Hyung, Donald R. Vissers, Khalil Amine