Patents by Inventor Yoon Jung JEONG

Yoon Jung JEONG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240131595
    Abstract: A processing machine (10) for building an object (11) from powder (12) includes a build platform (26A); a powder supply assembly (18) that deposits the powder (12) onto the build platform (26A) to form a powder layer (13); and an energy system (22) that directs an energy beam (22D) at a portion of the powder (12) on the build platform (26A) to form a portion of the object (11). The powder supply assembly (18) can include (i) a powder container (640A) that retains the powder (12); (ii) a supply outlet (639) positioned over the build platform (26A); and (ii) a flow control assembly (642) that selectively controls the flow of the powder (12) from the supply outlet (639).
    Type: Application
    Filed: June 30, 2020
    Publication date: April 25, 2024
    Inventors: Alton Hugh Phillips, Joseph P. Rossi, Johnathan Agustin Marquez, Yoon Jung Jeong, Lexian Guo, Patrick Shih Chang, Eric Peter Goodwin, Michael Birk Binnard, Brett William Herr, Matthew Parker-McCormick Bjork, Paul Derek Coon, Motofusa Ishikawa
  • Publication number: 20230381978
    Abstract: A machine (10) for positioning an object (12) includes a movable part (16C) and a vibration reduction assembly (24) that couples the object (12) to the movable part (16C). Further, the vibration reduction assembly (24) reduces a magnitude of a vibration being transferred from the movable part (16C) to the object (12). The vibration reduction assembly (24) can include an actively controlled support system (30) and an actively controlled actuator system (32).
    Type: Application
    Filed: September 28, 2021
    Publication date: November 30, 2023
    Applicant: NIKON CORPORATION
    Inventors: Michael Birk BINNARD, Matthew Parker-McCormick BJORK, Yoon Jung JEONG
  • Publication number: 20230264266
    Abstract: A processing system includes: an irradiation system that irradiates an object with an energy beam; a material supply member that supplies a build material irradiated with the energy beam; a measurement apparatus that obtains information related to a height of a surface of the object; and a distance change apparatus that changes a distance between the material supply member and the surface based on a measured result by the measurement apparatus.
    Type: Application
    Filed: July 22, 2020
    Publication date: August 24, 2023
    Applicant: NIKON CORPORATION
    Inventors: Toshimitsu KURAMI, Zhi-Wei LIN, Yoon Jung JEONG, Michael Birk BINNARD
  • Publication number: 20220266345
    Abstract: A processing machine (10) for building an object (11) from powder (12) includes a build platform (434A); a powder supply assembly (418); and an energy system (22) that melts the powder (12) on the build platform (434A) to form the object (11). The powder supply assembly (418) can include (i) a first container region (444A) that retains the powder (12) prior to distribution onto the build platform (434A); (ii) a supply outlet (439) positioned over the build platform (434A); (iii) a flow control assembly (442) that selectively controls the flow of the powder (12) from the first container region (444A) to the supply outlet (439); (iv) a second container region (446A) that retains the powder (12) for refilling the first container region (444A); and (v) an actuator system (448) that urges powder (12) from the second container region (446A) to fill the first container region (444A).
    Type: Application
    Filed: February 18, 2022
    Publication date: August 25, 2022
    Inventors: Joseph Paul Rossi, Yoon Jung Jeong, Patrick Shih Chang, Johnathan Agustin Marquez, Alton Hugh Phillips, Lexian Guo
  • Publication number: 20220112934
    Abstract: Apparatus include a reaction mass and an actuator coupled to the reaction mass. The actuator is configured to couple to a payload and to move the reaction mass in response to a movement error of the payload to reduce the movement error of the payload. Robotic systems using actuated reaction masses, as well as related methods of reducing movement errors, are also disclosed.
    Type: Application
    Filed: October 8, 2021
    Publication date: April 14, 2022
    Applicant: Nikon Corporation
    Inventors: Alton Hugh Phillips, Michael Birk Binnard, Yoon Jung Jeong, Matthew Parker-McCormick Bjork
  • Publication number: 20220113487
    Abstract: Positioning assemblies for use with a robot include a gimbal assembly having a gimbal's rotational center is positioned directly above a center of gravity of a payload. One or more linear counter masses and/or one or more rotating masses (flywheels) can be provided, and each can include an actuator or brake to control forces acting between the counter masses and/or flywheels and the payload and stabilize the payload during and after movement of the payload with the robot.
    Type: Application
    Filed: October 8, 2021
    Publication date: April 14, 2022
    Applicant: Nikon Corporation
    Inventors: Yoon Jung Jeong, Michael Birk Binnard, Alton Hugh Phillips, Matthew Parker-McCormick Bjork
  • Publication number: 20220111521
    Abstract: A vibration reduction system includes a base, a carrier element, and a plurality of actuator systems extending between the base and the carrier element, the plurality of actuator systems arranged to apply forces to the carrier element in multiple axes to reduce vibration of the carrier element, each actuator system of the plurality of actuator systems including a pneumatic actuator and an electric actuator.
    Type: Application
    Filed: October 7, 2021
    Publication date: April 14, 2022
    Applicant: Nikon Corporation
    Inventors: Michael Birk Binnard, Yoon Jung Jeong, Alton Hugh Phillips
  • Publication number: 20220111540
    Abstract: A vibration reduction assembly (24) for reducing a magnitude of a vibration being transferred from a first component (14) (e.g. a robot assembly) to a second component (12) (e.g. a payload) includes a first vibration reduction system (30) and a second vibration reduction system (32). The first vibration reduction system (30) reducing vibration along a first axis that is oriented parallel with gravity. The second vibration reduction system (32) reducing vibration along a second axis that is orthogonal to the first axis. The first vibration reduction system (30) and the second vibration reduction system (32) are connected in series between the first component (14) and the second component (12).
    Type: Application
    Filed: October 8, 2021
    Publication date: April 14, 2022
    Inventors: Michael Birk Binnard, Matthew Parker-McCormick Bjork, Yoon Jung Jeong
  • Patent number: 10682249
    Abstract: An exoskeleton (100) adapted to be coupled to a lower extremity of a person includes a thigh link (102), a shank link (104) and a knee joint (106) allowing flexion and extension between the thigh and shank links (102, 104). A torque generator (156) connected to the knee joint (106) includes a wrap spring (110) having a first end (112) coupled to the thigh link (102), and a second end (118) coupled to an electric actuator (116) capable of selectively positioning the second end (118) of the wrap spring (110). A controller (120) causes the electric actuator (116) to position the wrap spring (110) to provide a selective torque between the thigh and shank links (102, 104) based on a signal (212, 214, 216) produced by a sensor (164, 166, 168).
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: June 16, 2020
    Assignee: The Regents of the University of California
    Inventors: Homayoon Kazerooni, Wayne Tung, Don Jin Hyun, Stephen McKinley, Yoon Jung Jeong
  • Publication number: 20190231574
    Abstract: An exoskeleton includes two torque generators, thigh links, and a supporting trunk rotatably coupled to the thigh links. When a wearer bends forward in the sagittal plane such that the supporting trunk extends beyond a predetermined angle A with respect to vertical, at least one of the torque generators imposes a resisting torque between the supporting trunk and a corresponding thigh link, thus imposing a force onto a wearer's trunk and thighs to aid in supporting the wearer in a bent position. The exoskeleton may include an active or passive means for actuating the torque generators. When the supporting trunk does not extend beyond the predetermined angle A, the torque generators do not impose resisting torques between the supporting trunk and thigh links during the entire range of motion of the thigh links, thus enabling a wearer to walk, run, and sit without constraint while in a substantially upright position.
    Type: Application
    Filed: April 4, 2019
    Publication date: August 1, 2019
    Applicants: U.S. Bionics, Inc., The Regents of the University of California
    Inventors: Homayoon Kazerooni, Wayne Tung, Michael McKinley, Yoon Jung Jeong
  • Patent number: 10357392
    Abstract: An exoskeleton (100) includes two torque generators (116, 118), two thigh links (104,106), and a supporting trunk (112) rotatably coupled to the thigh links (104, 106). When a wearer bends forward in the sagittal plane such that the supporting trunk (112) extends beyond a predetermined angle A with respect to vertical, at least one of the torque generators (116, 118) imposes a resisting torque between the supporting trunk (112) and a corresponding thigh link (104, 106), thus imposing a force onto a wearer's trunk and thighs to aid in supporting the wearer in a bent position. The exoskeleton (100) may include an active or passive means (116, 134) for actuating the torque generators (116, 118).
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: July 23, 2019
    Assignees: The Regents of the University of California, U.S. Bionics, Inc.
    Inventors: Homayoon Kazerooni, Wayne Tung, Michael McKinley, Yoon Jung Jeong
  • Patent number: 9987151
    Abstract: A manual apparatus of the present invention enables quick connection and disconnection of an exoskeleton leg from a remaining body of an exoskeleton. The apparatus comprises a cavity defined by a housing coupled to the remaining body of the exoskeleton; a latch coupled to the remaining body of the exoskeleton, the latch comprising a latching feature; a clip body including a projection element extending from an end thereof, the clip body coupled to the exoskeleton leg; a handle rotatably coupled to a clip base on the clip body; and a hook rotatably coupled to the handle. When the hook is engaged with the latching feature and the handle rotated from a first unlatched position to a second latched position, the projection element moves inside the cavity.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: June 5, 2018
    Assignee: The Regents of the University of California
    Inventors: Nicholas Errico, Homayoon Kazerooni, Yoon Jung Jeong
  • Publication number: 20180110632
    Abstract: A manual apparatus of the present disclosure enables quick connection and disconnection of an exoskeleton leg from a remaining body of an exoskeleton. The apparatus comprises a cavity defined by a housing coupled to the remaining body of the exoskeleton; a latch coupled to the remaining body of the exoskeleton, the latch comprising a latching feature; a clip body including a projection element extending from an end thereof, the clip body coupled to the exoskeleton leg; a handle rotatably coupled to a clip base on the clip body; and a hook rotatably coupled to the handle. When the hook is engaged with the latching feature and the handle rotated from a first unlatched position to a second latched position, the projection element moves inside the cavity.
    Type: Application
    Filed: December 20, 2017
    Publication date: April 26, 2018
    Applicant: The Regents of the University of California
    Inventors: Nicholas Errico, Homayoon KAZEROONI, Yoon Jung JEONG
  • Publication number: 20160374836
    Abstract: A manual apparatus of the present invention enables quick connection and disconnection of an exoskeleton leg from a remaining body of an exoskeleton. The apparatus comprises a cavity defined by a housing coupled to the remaining body of the exoskeleton; a latch coupled to the remaining body of the exoskeleton, the latch comprising a latching feature; a clip body including a projection element extending from an end thereof, the clip body coupled to the exoskeleton leg; a handle rotatably coupled to a clip base on the clip body; and a hook rotatably coupled to the handle. When the hook is engaged with the latching feature and the handle rotated from a first unlatched position to a second latched position, the projection element moves inside the cavity.
    Type: Application
    Filed: June 23, 2016
    Publication date: December 29, 2016
    Inventors: Nicholas ERRICO, Homayoon KAZEROONI, Yoon Jung Jeong
  • Patent number: 9158376
    Abstract: An input device for commanding an exoskeleton worn by a person, adapted to be coupled to the person, the input device comprising: at least one signal generator adapted to be coupled to the user's finger capable of generating at least one electric signal when said one signal generator gets contacted and, an input device controller adapted to be coupled to the user's body capable of receiving and processing at least one signal and transmitting a command signal to the exoskeleton.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: October 13, 2015
    Assignee: The Regents of the University of California
    Inventors: Homayoon Kazerooni, Yoon Jung Jeong, Kyunam Kim
  • Publication number: 20150230964
    Abstract: An exoskeleton (100) includes two torque generators (116, 118), two thigh links (104,106), and a supporting trunk (112) rotatably coupled to the thigh links (104, 106). When a wearer bends forward in the sagittal plane such that the supporting trunk (112) extends beyond a predetermined angle A with respect to vertical, at least one of the torque generators (116, 118) imposes a resisting torque between the supporting trunk (112) and a corresponding thigh link (104, 106), thus imposing a force onto a wearer's trunk and thighs to aid in supporting the wearer in a bent position. The exoskeleton (100) may include an active or passive means (116, 134) for actuating the torque generators (116, 118).
    Type: Application
    Filed: May 5, 2015
    Publication date: August 20, 2015
    Inventors: Homayoon Kazerooni, Wayne Tung, Michael McKinley, Yoon Jung Jeong
  • Publication number: 20150173929
    Abstract: An exoskeleton (100) adapted to be coupled to a lower extremity of a person includes a thigh link (102), a shank link (104) and a knee joint (106) allowing flexion and extension between the thigh and shank links (102, 104). A torque generator (156) connected to the knee joint (106) includes a wrap spring (110) having a first end (112) coupled to the thigh link (102), and a second end (118) coupled to an electric actuator (116) capable of selectively positioning the second end (118) of the wrap spring (110). A controller (120) causes the electric actuator (116) to position the wrap spring (110) to provide a selective torque between the thigh and shank links (102, 104) based on a signal (212, 214, 216) produced by a sensor (164, 166, 168).
    Type: Application
    Filed: March 6, 2015
    Publication date: June 25, 2015
    Inventors: Homayoon KAZEROONI, Wayne TUNG, Don Jin HYUN, Stephen MCKINLEY, Yoon Jung JEONG
  • Patent number: 9022956
    Abstract: An exoskeleton (100) includes two torque generators (116, 118), two thigh links (104,106), and a supporting trunk (112) rotatably coupled to the thigh links (104, 106). When a wearer bends forward in the sagittal plane such that the supporting trunk (112) extends beyond a predetermined angle A with respect to vertical, at least one of the torque generators (116, 118) imposes a resisting torque between the supporting trunk (112) and a corresponding thigh link (104, 106), thus imposing a force onto a wearer's trunk and thighs to aid in supporting the wearer in a bent position. The exoskeleton (100) may include an active or passive means (116, 134) for actuating the torque generators (116, 118).
    Type: Grant
    Filed: September 8, 2014
    Date of Patent: May 5, 2015
    Assignee: U.S. Bionics, Inc.
    Inventors: Homayoon Kazerooni, Wayne Tung, Michael McKinley, Yoon Jung Jeong
  • Publication number: 20140378882
    Abstract: An exoskeleton (100) includes two torque generators (116, 118), two thigh links (104,106), and a supporting trunk (112) rotatably coupled to the thigh links (104, 106). When a wearer bends forward in the sagittal plane such that the supporting trunk (112) extends beyond a predetermined angle A with respect to vertical, at least one of the torque generators (116, 118) imposes a resisting torque between the supporting trunk (112) and a corresponding thigh link (104, 106), thus imposing a force onto a wearer's trunk and thighs to aid in supporting the wearer in a bent position. The exoskeleton (100) may include an active or passive means (116, 134) for actuating the torque generators (116, 118).
    Type: Application
    Filed: September 8, 2014
    Publication date: December 25, 2014
    Applicant: U.S. BIONICS, INC.
    Inventors: Homayoon Kazerooni, Wayne Tung, Michael McKinley, Yoon Jung Jeong
  • Publication number: 20140358290
    Abstract: An input device for commanding an exoskeleton worn by a person, adapted to be coupled to the person, the input device comprising: at least one signal generator adapted to be coupled to the user's finger capable of generating at least one electric signal when said one signal generator gets contacted and, an input device controller adapted to be coupled to the user's body capable of receiving and processing at least one signal and transmitting a command signal to the exoskeleton.
    Type: Application
    Filed: May 30, 2014
    Publication date: December 4, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Homayoon KAZEROONI, Yoon Jung JEONG, Kyunam KIM